"""Application to demo inpainting, Median and Bilateral Blur using streamlit. Run using: streamlit run 10_04_image_restoration_app.py """ import streamlit as st import pathlib from streamlit_drawable_canvas import st_canvas import cv2 import numpy as np import io import base64 from PIL import Image # Function to create a download link for output image def get_image_download_link(img, filename, text): """Generates a link to download a particular image file.""" buffered = io.BytesIO() img.save(buffered, format='JPEG') img_str = base64.b64encode(buffered.getvalue()).decode() href = f'{text}' return href # Set title. st.sidebar.title('Image Restoration') # Specify canvas parameters in application uploaded_file = st.sidebar.file_uploader("Upload Image to restore OK:", type=["png", "jpg"]) image = None res = None if uploaded_file is not None: # Debug: Print uploaded file information # st.write("Uploaded file:", uploaded_file.name) # Convert the file to an opencv image. file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, 1) # Debug: Print image shape # st.write("Image shape:", image.shape) # Display the uploaded image immediately # st.image(image[:,:,::-1], caption='Uploaded Image') # Display a selection box for choosing the filter to apply. option = st.sidebar.selectbox('Median or Bilateral Blur or Inpaint?', ('None', 'Median Blur', 'Bilateral Blur', 'Image Inpaint')) if option == 'Median Blur': ksize = st.sidebar.slider("ksize: ", 3, 15, 5, 2) image = cv2.medianBlur(image, ksize) res=image[:,:,::-1] st.image(res) elif option == 'Bilateral Blur': dia = st.sidebar.slider("diameter: ", 1, 50, 20) sigmaColor = st.sidebar.slider("sigmaColor: ", 0, 250, 200, 10) sigmaSpace = st.sidebar.slider("sigmaSpace: ", 0, 250, 100, 10) image = cv2.bilateralFilter(image, dia, sigmaColor, sigmaSpace) res=image[:,:,::-1] st.image(res) elif option == 'Image Inpaint': # Debug: Print selected option # st.write("Selected option for inpainting:", option) stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5) # st.write("Stroke width:", stroke_width) # Debug: Print stroke width h, w = image.shape[:2] # st.write("Original image dimensions (h, w):", h, w) # Debug: Print dimensions if w > 800: h_, w_ = int(h * 800 / w), 800 else: h_, w_ = h, w # st.write("Updated image dimensions (h_, w_):", h_, w_) # Debug: Print dimensions # Create a canvas component. canvas_result = st_canvas( fill_color='white', stroke_width=stroke_width, stroke_color='black', background_image=Image.open(uploaded_file).resize((h_, w_)), update_streamlit=True, height=h_, width=w_, drawing_mode='freedraw', key="canvas", ) # Debug: Print canvas result # st.write("Canvas result:", canvas_result) stroke = canvas_result.image_data if stroke is not None: # Debug: Print stroke data # st.write("Stroke data shape:", stroke.shape) if st.sidebar.checkbox('show mask'): st.image(stroke) mask = cv2.split(stroke)[3] mask = np.uint8(mask) mask = cv2.resize(mask, (w, h)) # Debug: Print mask shape # st.write("Mask shape:", mask.shape) st.sidebar.caption('Happy with the selection?') option = st.sidebar.selectbox('Mode', ['None', 'Telea', 'NS', 'Compare both']) if option == 'Telea': st.subheader('Result of Telea') res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1] st.image(res) # Debug: Print result shape # st.write("Telea result shape:", res.shape) elif option == 'Compare both': col1, col2 = st.columns(2) res1 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1] res2 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1] with col1: st.subheader('Result of Telea') st.image(res1) with col2: st.subheader('Result of NS') st.image(res2) if res1 is not None: # Display link. result1 = Image.fromarray(res1) st.sidebar.markdown( get_image_download_link(result1, 'telea.png', 'Download Output of Telea'), unsafe_allow_html=True) if res2 is not None: # Display link. result2 = Image.fromarray(res2) st.sidebar.markdown( get_image_download_link(result2, 'ns.png', 'Download Output of NS'), unsafe_allow_html=True) elif option == 'NS': st.subheader('Result of NS') res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1] st.image(res) else: pass if res is not None: # Debug: Print final result shape # st.write("Final result shape:", res.shape) # Display link. result = Image.fromarray(res) st.sidebar.markdown( get_image_download_link(result, 'output.png', 'Download Output'), unsafe_allow_html=True)