import gradio as gr import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from huggingface_hub import hf_hub_download from torch.autograd import Variable from PIL import Image def build_model(hypar, device): net = hypar["model"] # GOSNETINC(3,1) # convert to half precision if hypar["model_digit"] == "half": net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if hypar["restore_model"] != "": net.load_state_dict( torch.load( hypar["model_path"] + "/" + hypar["restore_model"], map_location=device, ) ) net.to(device) net.eval() return net if not os.path.exists("saved_models"): os.mkdir("saved_models") os.mkdir("git") os.system("git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS") hf_hub_download( repo_id="NimaBoscarino/IS-Net_DIS-general-use", filename="isnet-general-use.pth", local_dir="saved_models", ) os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__") os.system("mv git/xuebinqin/DIS/IS-Net/* .") import data_loader_cache import models device = "cpu" ISNetDIS = models.ISNetDIS normalize = data_loader_cache.normalize im_preprocess = data_loader_cache.im_preprocess # Set Parameters hypar = {} # paramters for inferencing # load trained weights from this path hypar["model_path"] = "./saved_models" # name of the to-be-loaded weights hypar["restore_model"] = "isnet-general-use.pth" # indicate if activate intermediate feature supervision hypar["interm_sup"] = False # choose floating point accuracy -- # indicates "half" or "full" accuracy of float number hypar["model_digit"] = "full" hypar["seed"] = 0 # cached input spatial resolution, can be configured into different size hypar["cache_size"] = [1024, 1024] # data augmentation parameters --- # mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images hypar["input_size"] = [1024, 1024] # random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation hypar["crop_size"] = [1024, 1024] hypar["model"] = ISNetDIS() # Build Model net = build_model(hypar, device) def predict(net, inputs_val, shapes_val, hypar, device): """ Given an Image, predict the mask """ net.eval() if hypar["model_digit"] == "full": inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to( device ) # wrap inputs in Variable ds_val = net(inputs_val_v)[0] # list of 6 results # B x 1 x H x W # we want the first one which is the most accurate prediction pred_val = ds_val[0][0, :, :, :] # recover the prediction spatial size to the orignal image size pred_val = torch.squeeze( F.upsample( torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode="bilinear", ) ) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val - mi) / (ma - mi) # max = 1 if device == "cpu": torch.cpu.empty_cache() # it is the mask we need return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) def load_image(im_pil, hypar): im = np.array(im_pil) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im, 255.0) shape = torch.from_numpy(np.array(im_shp)) # make a batch of image, shape aa = normalize(im, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) return aa.unsqueeze(0), shape.unsqueeze(0) def remove_background(image): image_tensor, orig_size = load_image(image, hypar) mask = predict(net, image_tensor, orig_size, hypar, "cpu") mask = Image.fromarray(mask).convert("L") im_rgb = image.convert("RGB") cropped = im_rgb.copy() cropped.putalpha(mask) return cropped inputs = gr.inputs.Image() outputs = gr.outputs.Image(type="pil") interface = gr.Interface( fn=remove_background, inputs=inputs, outputs=outputs, title="Remove Background", description="This App removes the background from an image", examples=[ "examples/input/1.jpeg", "examples/input/2.jpeg", "examples/input/3.jpeg", ], cache_examples=True, ) interface.launch(enable_queue=True)