dhairyashah
commited on
Commit
•
bffe517
1
Parent(s):
7a60200
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,8 @@ from facenet_pytorch import MTCNN, InceptionResnetV1
|
|
9 |
import numpy as np
|
10 |
from pytorch_grad_cam import GradCAM
|
11 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
12 |
-
import
|
|
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
@@ -27,12 +28,16 @@ DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
27 |
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
|
28 |
|
29 |
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
|
30 |
-
# Model Credits: https://huggingface.co/spaces/dhairyashah/deepfake-alpha-version/blob/main/CREDITS.md
|
31 |
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
|
32 |
model.load_state_dict(checkpoint['model_state_dict'])
|
33 |
model.to(DEVICE)
|
34 |
model.eval()
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
def allowed_file(filename):
|
37 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
38 |
|
@@ -40,7 +45,7 @@ def allowed_file(filename):
|
|
40 |
def process_frame(frame):
|
41 |
face = mtcnn(frame)
|
42 |
if face is None:
|
43 |
-
return None, None
|
44 |
|
45 |
face = face.unsqueeze(0)
|
46 |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
@@ -53,14 +58,22 @@ def process_frame(frame):
|
|
53 |
output = torch.sigmoid(model(face).squeeze(0))
|
54 |
prediction = "fake" if output.item() >= 0.5 else "real"
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
@spaces.GPU
|
59 |
-
def analyze_video(video_path, sample_rate=30):
|
60 |
cap = cv2.VideoCapture(video_path)
|
61 |
frame_count = 0
|
62 |
fake_count = 0
|
63 |
total_processed = 0
|
|
|
64 |
|
65 |
while cap.isOpened():
|
66 |
ret, frame = cap.read()
|
@@ -69,22 +82,32 @@ def analyze_video(video_path, sample_rate=30):
|
|
69 |
|
70 |
if frame_count % sample_rate == 0:
|
71 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
72 |
-
prediction, confidence = process_frame(rgb_frame)
|
73 |
|
74 |
if prediction is not None:
|
75 |
total_processed += 1
|
76 |
if prediction == "fake":
|
77 |
fake_count += 1
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
frame_count += 1
|
80 |
|
81 |
cap.release()
|
82 |
|
83 |
if total_processed > 0:
|
84 |
fake_percentage = (fake_count / total_processed) * 100
|
85 |
-
|
|
|
|
|
|
|
86 |
else:
|
87 |
-
return 0
|
88 |
|
89 |
@app.route('/analyze', methods=['POST'])
|
90 |
def analyze_video_api():
|
@@ -102,12 +125,17 @@ def analyze_video_api():
|
|
102 |
file.save(filepath)
|
103 |
|
104 |
try:
|
105 |
-
fake_percentage = analyze_video(filepath)
|
106 |
os.remove(filepath) # Remove the file after analysis
|
107 |
|
|
|
|
|
|
|
|
|
108 |
result = {
|
109 |
'fake_percentage': round(fake_percentage, 2),
|
110 |
-
'is_likely_deepfake': fake_percentage >= 60
|
|
|
111 |
}
|
112 |
|
113 |
return jsonify(result), 200
|
|
|
9 |
import numpy as np
|
10 |
from pytorch_grad_cam import GradCAM
|
11 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
12 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
13 |
+
import base64
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
|
|
|
28 |
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
|
29 |
|
30 |
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
|
|
|
31 |
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
|
32 |
model.load_state_dict(checkpoint['model_state_dict'])
|
33 |
model.to(DEVICE)
|
34 |
model.eval()
|
35 |
|
36 |
+
# GradCAM setup
|
37 |
+
target_layers = [model.block8.branch1[-1]]
|
38 |
+
cam = GradCAM(model=model, target_layers=target_layers)
|
39 |
+
targets = [ClassifierOutputTarget(0)]
|
40 |
+
|
41 |
def allowed_file(filename):
|
42 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
43 |
|
|
|
45 |
def process_frame(frame):
|
46 |
face = mtcnn(frame)
|
47 |
if face is None:
|
48 |
+
return None, None, None
|
49 |
|
50 |
face = face.unsqueeze(0)
|
51 |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
|
|
58 |
output = torch.sigmoid(model(face).squeeze(0))
|
59 |
prediction = "fake" if output.item() >= 0.5 else "real"
|
60 |
|
61 |
+
# Generate GradCAM
|
62 |
+
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
63 |
+
grayscale_cam = grayscale_cam[0, :]
|
64 |
+
|
65 |
+
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().numpy()
|
66 |
+
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
|
67 |
+
|
68 |
+
return prediction, output.item(), visualization
|
69 |
|
70 |
@spaces.GPU
|
71 |
+
def analyze_video(video_path, sample_rate=30, top_n=5):
|
72 |
cap = cv2.VideoCapture(video_path)
|
73 |
frame_count = 0
|
74 |
fake_count = 0
|
75 |
total_processed = 0
|
76 |
+
frames_info = []
|
77 |
|
78 |
while cap.isOpened():
|
79 |
ret, frame = cap.read()
|
|
|
82 |
|
83 |
if frame_count % sample_rate == 0:
|
84 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
85 |
+
prediction, confidence, visualization = process_frame(rgb_frame)
|
86 |
|
87 |
if prediction is not None:
|
88 |
total_processed += 1
|
89 |
if prediction == "fake":
|
90 |
fake_count += 1
|
91 |
|
92 |
+
frames_info.append({
|
93 |
+
'frame_number': frame_count,
|
94 |
+
'prediction': prediction,
|
95 |
+
'confidence': confidence,
|
96 |
+
'visualization': visualization
|
97 |
+
})
|
98 |
+
|
99 |
frame_count += 1
|
100 |
|
101 |
cap.release()
|
102 |
|
103 |
if total_processed > 0:
|
104 |
fake_percentage = (fake_count / total_processed) * 100
|
105 |
+
frames_info.sort(key=lambda x: x['confidence'], reverse=True)
|
106 |
+
top_frames = frames_info[:top_n]
|
107 |
+
|
108 |
+
return fake_percentage, top_frames
|
109 |
else:
|
110 |
+
return 0, []
|
111 |
|
112 |
@app.route('/analyze', methods=['POST'])
|
113 |
def analyze_video_api():
|
|
|
125 |
file.save(filepath)
|
126 |
|
127 |
try:
|
128 |
+
fake_percentage, top_frames = analyze_video(filepath)
|
129 |
os.remove(filepath) # Remove the file after analysis
|
130 |
|
131 |
+
# Convert numpy arrays to base64 encoded strings
|
132 |
+
for frame in top_frames:
|
133 |
+
frame['visualization'] = base64.b64encode(cv2.imencode('.png', frame['visualization'])[1]).decode('utf-8')
|
134 |
+
|
135 |
result = {
|
136 |
'fake_percentage': round(fake_percentage, 2),
|
137 |
+
'is_likely_deepfake': fake_percentage >= 60,
|
138 |
+
'top_frames': top_frames
|
139 |
}
|
140 |
|
141 |
return jsonify(result), 200
|