import pandas as pd import numpy as np from datasets import Dataset from transformers import AutoTokenizer,AutoModelForSequenceClassification import torch from itertools import chain import re def remove_links(review): pattern = r'\bhttps?://\S+' return re.sub(pattern, '', review) # df = pd.read_csv('/Users/danfinel/Downloads/Reviews.csv') # df = df.loc[:,['Text']].iloc[:1000] # df['Text'] = df['Text'].str.replace(r'<[^>]*>', '', regex=True) # df['Text'] = df['Text'].apply(remove_links) model = AutoModelForSequenceClassification.from_pretrained( '../topic_magnet/bert_regr_other_pretrained', num_labels = 1) tokenizer = AutoTokenizer.from_pretrained( '../topic_magnet/bert_regr_other_pretrained') def preprocess_function_regr(examples): return tokenizer(examples["Text"], truncation=True, max_length=64, padding = 'max_length') def get_predictions(reviews): #new_test = pd.DataFrame(reviews) new_ds_regr = Dataset.from_pandas(reviews) new_ds_regr_tok = new_ds_regr.map(preprocess_function_regr, remove_columns = ['Text']) input_ids = torch.tensor(new_ds_regr_tok['input_ids']) token_type_ids = torch.tensor(new_ds_regr_tok['token_type_ids']) attention_mask = torch.tensor(new_ds_regr_tok['attention_mask']) with torch.no_grad(): outputs = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) predictions = outputs.logits return predictions def get_ratings_perc(reviews): preds = get_predictions(reviews) predictions_list = list(chain.from_iterable(preds.tolist())) predictions_array = np.clip(predictions_list,1,5) predictions_array = [round(x) for x in predictions_array] sum = np.unique(predictions_array, return_counts = True)[1].sum() ratings_perc = np.unique(predictions_array, return_counts = True)[1]/sum *100 return ratings_perc def get_ratings_dic(reviews): ratings_perc = get_ratings_perc(reviews) dic = {} for i in range(1,6): dic[i] = f'{ratings_perc[i-1].round(2)} %' return dic #print(get_ratings_dic(df)) # new_test = pd.DataFrame(df.loc[:,'Text'].iloc[:1000]) # new_ds_regr = Dataset.from_pandas(new_test) # new_ds_regr_tok = new_ds_regr.map(preprocess_function_regr, remove_columns = ['Text']) # # input_ids = torch.tensor(new_ds_regr_tok['input_ids']) # token_type_ids = torch.tensor(new_ds_regr_tok['token_type_ids']) # attention_mask = torch.tensor(new_ds_regr_tok['attention_mask']) # with torch.no_grad(): # outputs = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) # predictions = outputs.logits # # predictions_list = list(chain.from_iterable(predictions.tolist())) # predictions_array = np.clip(predictions_list,1,5) # predictions_array = [round(x) for x in predictions_array] # print(np.unique(predictions_array, return_counts = True))