""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import copy import json import os import random from collections import defaultdict from typing import Iterable import numpy as np import torch from PIL import Image from torch.utils.data import ConcatDataset, Dataset from torch.utils.data.dataloader import default_collate from transformers import LlamaTokenizer TEMPLATE = { "description": "Template used by Alpaca-LoRA.", # "prompt_choice": "Below is a multiple choice question about an image, along with answer options. Please choose the correct answer from these options.\n\n### Image:\n{image}\n\n### Question:\n{question}\n\n### Input:\n{options}\n\n### Answer:\n", # "prompt_qa": "Below is a question about an image. Write a response to answer the question.\n\n### Image:\n{image}\n\n### Question:\n{question}\n\n### Answer:\n", "prompt_choice": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Image:\n{image}\n\n### Instruction:\n{question}\n\n### Input:\n{options}\n\n### Response:\n", "prompt_qa": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Image:\n{image}\n\n### Instruction:\n{question}\n\n### Response:\n", "response_split": "### Response:", } class VQAPrompter: def __call__(self, question, options=None): if options: options = ", ".join(options) res = TEMPLATE["prompt_choice"].format(image="", question=question, options=options) else: res = TEMPLATE["prompt_qa"].format(image="", question=question) return res def get_response(self, output: str) -> str: return output.split(TEMPLATE["response_split"])[-1].strip() class VQADataset(Dataset): def __init__( self, tokenizer, vis_processor=None, vis_root=None, ann_paths=[], add_eos=True, ignore_instruction=True, sample_image=False, ): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ assert tokenizer.add_eos_token is False, "tokenizer should not add eos token by default" self.tokenizer: LlamaTokenizer = tokenizer self.vis_root = vis_root self.annotation = [] for ann_path in ann_paths: self.annotation.extend(json.load(open(ann_path, "r"))) self.sample_image = sample_image if self.sample_image: print("randomly sample one annotation for each image") self.annotation = self.parse_annotation(self.annotation) self.vis_processor = vis_processor self._add_instance_ids() self.option_prob = 0.5 self.prompter = VQAPrompter() self.add_eos = add_eos self.ignore_instruction = ignore_instruction def parse_annotation(self, annotation): image_list = defaultdict(list) for ann in annotation: image_list[ann["image"]].append(ann) # image_name_list = list(image_list.keys()) annotation = [] for ann_list in image_list.values(): annotation.append(random.choice(ann_list)) return annotation def __len__(self): return len(self.annotation) def _add_instance_ids(self, key="instance_id"): for idx, ann in enumerate(self.annotation): ann[key] = str(idx) def process_image(self, ann): image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) return image def process_text(self, ann): question = ann["question"] answer_weight = {} for answer in ann["answer"]: if answer in answer_weight.keys(): answer_weight[answer] += 1 / len(ann["answer"]) else: answer_weight[answer] = 1 / len(ann["answer"]) answers = list(answer_weight.keys()) weights = list(answer_weight.values()) # create instruction true_answer = answers[np.argmax(weights)] is_option = random.random() < self.option_prob and len(answers) > 1 if is_option: instruction = self.prompter(question, answers) else: instruction = self.prompter(question) return dict(instruction=instruction, answer=true_answer) def tokenize(self, text): res = self.tokenizer( text["instruction"] + text["answer"], return_tensors=None, padding="do_not_pad", truncation=True, max_length=512, ) # manually add eos token if res["input_ids"][-1] != self.tokenizer.eos_token_id and len(res["input_ids"]) < 512 and self.add_eos: res["input_ids"].append(self.tokenizer.eos_token_id) res["attention_mask"].append(1) labels = copy.deepcopy(res["input_ids"]) # ignore instruction_token if self.ignore_instruction: instruction_token = self.tokenizer( text["instruction"], return_tensors=None, padding="do_not_pad", truncation=True, max_length=512 ) labels = [-100] * len(instruction_token["input_ids"]) + labels[len(instruction_token["input_ids"]) :] res.update(labels=labels) return res def __getitem__(self, index): ann = self.annotation[index] image = self.process_image(ann) text = self.process_text(ann) res = self.tokenize(text) res.update(image=image) res.update(text) return res def collater(self, samples): image_list, question_list, answer_list, input_id_list, attention_mask_list, labels_list = [], [], [], [], [], [] for sample in samples: image_list.append(sample["image"]) question_list.append(sample["instruction"]) answer_list.append(sample["answer"]) input_id_list.append(sample["input_ids"]) attention_mask_list.append(sample["attention_mask"]) labels_list.append(sample["labels"]) # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the # same length to return tensors. max_label_length = max(len(l) for l in labels_list) padding_side = self.tokenizer.padding_side padded_labels = [] for l in labels_list: remainder = [-100] * (max_label_length - len(l)) if isinstance(l, list): l = l + remainder if padding_side == "right" else remainder + l elif padding_side == "right": l = np.concatenate([l, remainder]).astype(np.int64) else: l = np.concatenate([remainder, l]).astype(np.int64) padded_labels.append(l) padded_samples = self.tokenizer.pad( {"input_ids": input_id_list, "attention_mask": attention_mask_list, "labels": padded_labels}, return_tensors="pt", padding="longest", ) labels = padded_samples["labels"] media_token_id = self.tokenizer("", add_special_tokens=False)["input_ids"][-1] labels[labels == self.tokenizer.pad_token_id] = -100 labels[:, 0] = -100 labels[labels == media_token_id] = -100 return { "image": torch.stack(image_list, dim=0), "input_ids": padded_samples["input_ids"], "attention_mask": padded_samples["attention_mask"], "labels": labels, "instruction": question_list, "answer": answer_list, } class ConcatDataset(ConcatDataset): def __init__(self, datasets: Iterable[Dataset]) -> None: super().__init__(datasets) def collater(self, samples): # TODO For now only supports datasets with same underlying collater implementations all_keys = set() for s in samples: all_keys.update(s) shared_keys = all_keys for s in samples: shared_keys = shared_keys & set(s.keys()) samples_shared_keys = [] for s in samples: samples_shared_keys.append({k: s[k] for k in s.keys() if k in shared_keys}) return self.datasets[0].collater(samples_shared_keys)