# This module is from [WeNet](https://github.com/wenet-e2e/wenet). # ## Citations # ```bibtex # @inproceedings{yao2021wenet, # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, # booktitle={Proc. Interspeech}, # year={2021}, # address={Brno, Czech Republic }, # organization={IEEE} # } # @article{zhang2022wenet, # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, # journal={arXiv preprint arXiv:2203.15455}, # year={2022} # } # """Decoder self-attention layer definition.""" from typing import Optional, Tuple import torch from torch import nn class DecoderLayer(nn.Module): """Single decoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. src_attn (torch.nn.Module): Inter-attention module instance. `MultiHeadedAttention` instance can be used as the argument. If `None` is passed, Inter-attention is not used, such as CIF, GPT, and other decoder only model. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): True: use layer_norm before each sub-block. False: to use layer_norm after each sub-block. """ def __init__( self, size: int, self_attn: nn.Module, src_attn: Optional[nn.Module], feed_forward: nn.Module, dropout_rate: float, normalize_before: bool = True, ): """Construct an DecoderLayer object.""" super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.norm1 = nn.LayerNorm(size, eps=1e-5) self.norm2 = nn.LayerNorm(size, eps=1e-5) self.norm3 = nn.LayerNorm(size, eps=1e-5) self.dropout = nn.Dropout(dropout_rate) self.normalize_before = normalize_before def forward( self, tgt: torch.Tensor, tgt_mask: torch.Tensor, memory: torch.Tensor, memory_mask: torch.Tensor, cache: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Compute decoded features. Args: tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). memory (torch.Tensor): Encoded memory (#batch, maxlen_in, size). memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). cache (torch.Tensor): cached tensors. (#batch, maxlen_out - 1, size). Returns: torch.Tensor: Output tensor (#batch, maxlen_out, size). torch.Tensor: Mask for output tensor (#batch, maxlen_out). torch.Tensor: Encoded memory (#batch, maxlen_in, size). torch.Tensor: Encoded memory mask (#batch, maxlen_in). """ residual = tgt if self.normalize_before: tgt = self.norm1(tgt) if cache is None: tgt_q = tgt tgt_q_mask = tgt_mask else: # compute only the last frame query keeping dim: max_time_out -> 1 assert cache.shape == ( tgt.shape[0], tgt.shape[1] - 1, self.size, ), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" tgt_q = tgt[:, -1:, :] residual = residual[:, -1:, :] tgt_q_mask = tgt_mask[:, -1:, :] x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]) if not self.normalize_before: x = self.norm1(x) if self.src_attn is not None: residual = x if self.normalize_before: x = self.norm2(x) x = residual + self.dropout( self.src_attn(x, memory, memory, memory_mask)[0] ) if not self.normalize_before: x = self.norm2(x) residual = x if self.normalize_before: x = self.norm3(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm3(x) if cache is not None: x = torch.cat([cache, x], dim=1) return x, tgt_mask, memory, memory_mask