# This module is from [WeNet](https://github.com/wenet-e2e/wenet). # ## Citations # ```bibtex # @inproceedings{yao2021wenet, # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, # booktitle={Proc. Interspeech}, # year={2021}, # address={Brno, Czech Republic }, # organization={IEEE} # } # @article{zhang2022wenet, # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, # journal={arXiv preprint arXiv:2203.15455}, # year={2022} # } # from typing import Optional import torch from torch import nn from modules.wenet_extractor.utils.mask import make_pad_mask class Predictor(nn.Module): def __init__( self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, tail_threshold=0.45, ): super().__init__() self.pad = nn.ConstantPad1d((l_order, r_order), 0.0) self.cif_conv1d = nn.Conv1d(idim, idim, l_order + r_order + 1, groups=idim) self.cif_output = nn.Linear(idim, 1) self.dropout = torch.nn.Dropout(p=dropout) self.threshold = threshold self.smooth_factor = smooth_factor self.noise_threshold = noise_threshold self.tail_threshold = tail_threshold def forward( self, hidden, target_label: Optional[torch.Tensor] = None, mask: torch.Tensor = torch.tensor(0), ignore_id: int = -1, mask_chunk_predictor: Optional[torch.Tensor] = None, target_label_length: Optional[torch.Tensor] = None, ): h = hidden context = h.transpose(1, 2) queries = self.pad(context) memory = self.cif_conv1d(queries) output = memory + context output = self.dropout(output) output = output.transpose(1, 2) output = torch.relu(output) output = self.cif_output(output) alphas = torch.sigmoid(output) alphas = torch.nn.functional.relu( alphas * self.smooth_factor - self.noise_threshold ) if mask is not None: mask = mask.transpose(-1, -2).float() alphas = alphas * mask if mask_chunk_predictor is not None: alphas = alphas * mask_chunk_predictor alphas = alphas.squeeze(-1) mask = mask.squeeze(-1) if target_label_length is not None: target_length = target_label_length elif target_label is not None: target_length = (target_label != ignore_id).float().sum(-1) else: target_length = None token_num = alphas.sum(-1) if target_length is not None: alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1)) elif self.tail_threshold > 0.0: hidden, alphas, token_num = self.tail_process_fn( hidden, alphas, token_num, mask=mask ) acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold) if target_length is None and self.tail_threshold > 0.0: token_num_int = torch.max(token_num).type(torch.int32).item() acoustic_embeds = acoustic_embeds[:, :token_num_int, :] return acoustic_embeds, token_num, alphas, cif_peak def tail_process_fn( self, hidden, alphas, token_num: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None, ): b, t, d = hidden.size() tail_threshold = self.tail_threshold if mask is not None: zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device) ones_t = torch.ones_like(zeros_t) mask_1 = torch.cat([mask, zeros_t], dim=1) mask_2 = torch.cat([ones_t, mask], dim=1) mask = mask_2 - mask_1 tail_threshold = mask * tail_threshold alphas = torch.cat([alphas, zeros_t], dim=1) alphas = torch.add(alphas, tail_threshold) else: tail_threshold_tensor = torch.tensor( [tail_threshold], dtype=alphas.dtype ).to(alphas.device) tail_threshold_tensor = torch.reshape(tail_threshold_tensor, (1, 1)) alphas = torch.cat([alphas, tail_threshold_tensor], dim=1) zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device) hidden = torch.cat([hidden, zeros], dim=1) token_num = alphas.sum(dim=-1) token_num_floor = torch.floor(token_num) return hidden, alphas, token_num_floor def gen_frame_alignments( self, alphas: torch.Tensor = None, encoder_sequence_length: torch.Tensor = None ): batch_size, maximum_length = alphas.size() int_type = torch.int32 is_training = self.training if is_training: token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type) else: token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type) max_token_num = torch.max(token_num).item() alphas_cumsum = torch.cumsum(alphas, dim=1) alphas_cumsum = torch.floor(alphas_cumsum).type(int_type) alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1) index = torch.ones([batch_size, max_token_num], dtype=int_type) index = torch.cumsum(index, dim=1) index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device) index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type) index_div_bool_zeros = index_div.eq(0) index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1 index_div_bool_zeros_count = torch.clamp( index_div_bool_zeros_count, 0, encoder_sequence_length.max() ) token_num_mask = (~make_pad_mask(token_num, max_len=max_token_num)).to( token_num.device ) index_div_bool_zeros_count *= token_num_mask index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat( 1, 1, maximum_length ) ones = torch.ones_like(index_div_bool_zeros_count_tile) zeros = torch.zeros_like(index_div_bool_zeros_count_tile) ones = torch.cumsum(ones, dim=2) cond = index_div_bool_zeros_count_tile == ones index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones) index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type( torch.bool ) index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type( int_type ) index_div_bool_zeros_count_tile_out = torch.sum( index_div_bool_zeros_count_tile, dim=1 ) index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type( int_type ) predictor_mask = ( ( ~make_pad_mask( encoder_sequence_length, max_len=encoder_sequence_length.max() ) ) .type(int_type) .to(encoder_sequence_length.device) ) index_div_bool_zeros_count_tile_out = ( index_div_bool_zeros_count_tile_out * predictor_mask ) predictor_alignments = index_div_bool_zeros_count_tile_out predictor_alignments_length = predictor_alignments.sum(-1).type( encoder_sequence_length.dtype ) return predictor_alignments.detach(), predictor_alignments_length.detach() class MAELoss(nn.Module): def __init__(self, normalize_length=False): super(MAELoss, self).__init__() self.normalize_length = normalize_length self.criterion = torch.nn.L1Loss(reduction="sum") def forward(self, token_length, pre_token_length): loss_token_normalizer = token_length.size(0) if self.normalize_length: loss_token_normalizer = token_length.sum().type(torch.float32) loss = self.criterion(token_length, pre_token_length) loss = loss / loss_token_normalizer return loss def cif(hidden: torch.Tensor, alphas: torch.Tensor, threshold: float): batch_size, len_time, hidden_size = hidden.size() # loop varss integrate = torch.zeros([batch_size], device=hidden.device) frame = torch.zeros([batch_size, hidden_size], device=hidden.device) # intermediate vars along time list_fires = [] list_frames = [] for t in range(len_time): alpha = alphas[:, t] distribution_completion = ( torch.ones([batch_size], device=hidden.device) - integrate ) integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where( fire_place, integrate - torch.ones([batch_size], device=hidden.device), integrate, ) cur = torch.where(fire_place, distribution_completion, alpha) remainds = alpha - cur frame += cur[:, None] * hidden[:, t, :] list_frames.append(frame) frame = torch.where( fire_place[:, None].repeat(1, hidden_size), remainds[:, None] * hidden[:, t, :], frame, ) fires = torch.stack(list_fires, 1) frames = torch.stack(list_frames, 1) list_ls = [] len_labels = torch.round(alphas.sum(-1)).int() max_label_len = len_labels.max() for b in range(batch_size): fire = fires[b, :] l = torch.index_select( frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze() ) pad_l = torch.zeros( [int(max_label_len - l.size(0)), hidden_size], device=hidden.device ) list_ls.append(torch.cat([l, pad_l], 0)) return torch.stack(list_ls, 0), fires