# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch.nn.functional as F import numpy as np from .Modules import ScaledDotProductAttention class MultiHeadAttention(nn.Module): """Multi-Head Attention module""" def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) self.dropout = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. output, attn = self.attention(q, k, v, mask=mask) output = output.view(n_head, sz_b, len_q, d_v) output = ( output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) ) # b x lq x (n*dv) output = self.dropout(self.fc(output)) output = self.layer_norm(output + residual) return output, attn class PositionwiseFeedForward(nn.Module): """A two-feed-forward-layer module""" def __init__(self, d_in, d_hid, kernel_size, dropout=0.1): super().__init__() # Use Conv1D # position-wise self.w_1 = nn.Conv1d( d_in, d_hid, kernel_size=kernel_size[0], padding=(kernel_size[0] - 1) // 2, ) # position-wise self.w_2 = nn.Conv1d( d_hid, d_in, kernel_size=kernel_size[1], padding=(kernel_size[1] - 1) // 2, ) self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x output = x.transpose(1, 2) output = self.w_2(F.relu(self.w_1(output))) output = output.transpose(1, 2) output = self.dropout(output) output = self.layer_norm(output + residual) return output