# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import numbers from typing import Any, List, Tuple, Union import torch from torch import Tensor, nn from torch.nn import functional as F from modules.general.scaling import ActivationBalancer from modules.general.scaling import BasicNorm as _BasicNorm _shape_t = Union[int, List[int], torch.Size] class LayerNorm(nn.Module): __constants__ = ["normalized_shape", "eps", "elementwise_affine"] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool def __init__( self, normalized_shape: _shape_t, eps: float = 1e-5, elementwise_affine: bool = True, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = tuple(normalized_shape) self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = nn.Parameter( torch.empty(self.normalized_shape, **factory_kwargs) ) self.bias = nn.Parameter( torch.empty(self.normalized_shape, **factory_kwargs) ) else: self.register_parameter("weight", None) self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, input: Tensor, embedding: Any = None) -> Tensor: if isinstance(input, tuple): input, embedding = input output = F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) return output, embedding assert embedding is None return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) def extra_repr(self) -> str: return ( "{normalized_shape}, eps={eps}, " "elementwise_affine={elementwise_affine}".format(**self.__dict__) ) class AdaptiveLayerNorm(nn.Module): r"""Adaptive Layer Normalization""" def __init__(self, d_model, norm) -> None: super(AdaptiveLayerNorm, self).__init__() self.project_layer = nn.Linear(d_model, 2 * d_model) self.norm = norm self.d_model = d_model self.eps = self.norm.eps def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: if isinstance(input, tuple): input, embedding = input weight, bias = torch.split( self.project_layer(embedding), split_size_or_sections=self.d_model, dim=-1, ) return (weight * self.norm(input) + bias, embedding) weight, bias = torch.split( self.project_layer(embedding), split_size_or_sections=self.d_model, dim=-1, ) return weight * self.norm(input) + bias class BasicNorm(_BasicNorm): def __init__( self, d_model: int, eps: float = 1e-5, device=None, dtype=None, ): super(BasicNorm, self).__init__(d_model, eps=eps) def forward(self, input: Tensor, embedding: Any = None) -> Tensor: if isinstance(input, tuple): input, embedding = input return ( super(BasicNorm, self).forward(input), embedding, ) assert embedding is None return super(BasicNorm, self).forward(input) class BalancedBasicNorm(nn.Module): def __init__( self, d_model: int, eps: float = 1e-5, device=None, dtype=None, ): super(BalancedBasicNorm, self).__init__() self.balancer = ActivationBalancer( d_model, channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0, ) self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype) def forward(self, input: Tensor, embedding: Any = None) -> Tensor: if isinstance(input, tuple): input, embedding = input return self.norm((self.balancer(input), embedding)) assert embedding is None return self.norm(self.balancer(input)) class IdentityNorm(nn.Module): def __init__( self, d_model: int, eps: float = 1e-5, device=None, dtype=None, ) -> None: super(IdentityNorm, self).__init__() def forward(self, input: Tensor, embedding: Any = None) -> Tensor: if isinstance(input, tuple): return input assert embedding is None return input