## This module is from [WeNet](https://github.com/wenet-e2e/wenet). # ## Citations # ```bibtex # @inproceedings{yao2021wenet, # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, # booktitle={Proc. Interspeech}, # year={2021}, # address={Brno, Czech Republic }, # organization={IEEE} # } # @article{zhang2022wenet, # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, # journal={arXiv preprint arXiv:2203.15455}, # year={2022} # } # """Encoder self-attention layer definition.""" from typing import Optional, Tuple import torch from torch import nn class StrideConformerEncoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. conv_module (torch.nn.Module): Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): True: use layer_norm before each sub-block. False: use layer_norm after each sub-block. """ def __init__( self, size: int, self_attn: torch.nn.Module, feed_forward: Optional[nn.Module] = None, feed_forward_macaron: Optional[nn.Module] = None, conv_module: Optional[nn.Module] = None, pointwise_conv_layer: Optional[nn.Module] = None, dropout_rate: float = 0.1, normalize_before: bool = True, ): """Construct an EncoderLayer object.""" super().__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.conv_module = conv_module self.pointwise_conv_layer = pointwise_conv_layer self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module if feed_forward_macaron is not None: self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5) self.ff_scale = 0.5 else: self.ff_scale = 1.0 if self.conv_module is not None: self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module self.norm_final = nn.LayerNorm( size, eps=1e-5 ) # for the final output of the block self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_linear = nn.Linear(size + size, size) def forward( self, x: torch.Tensor, mask: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Compute encoded features. Args: x (torch.Tensor): (#batch, time, size) mask (torch.Tensor): Mask tensor for the input (#batch, time,time), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): positional encoding, must not be None for ConformerEncoderLayer. mask_pad (torch.Tensor): batch padding mask used for conv module. (#batch, 1,time), (0, 0, 0) means fake mask. att_cache (torch.Tensor): Cache tensor of the KEY & VALUE (#batch=1, head, cache_t1, d_k * 2), head * d_k == size. cnn_cache (torch.Tensor): Convolution cache in conformer layer (#batch=1, size, cache_t2) Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time, time). torch.Tensor: att_cache tensor, (#batch=1, head, cache_t1 + time, d_k * 2). torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). """ # whether to use macaron style if self.feed_forward_macaron is not None: residual = x if self.normalize_before: x = self.norm_ff_macaron(x) x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x)) if not self.normalize_before: x = self.norm_ff_macaron(x) # multi-headed self-attention module residual = x if self.normalize_before: x = self.norm_mha(x) x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache) x = residual + self.dropout(x_att) if not self.normalize_before: x = self.norm_mha(x) # convolution module # Fake new cnn cache here, and then change it in conv_module new_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device) if self.conv_module is not None: residual = x if self.normalize_before: x = self.norm_conv(x) x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) # add pointwise_conv for efficient conformer # pointwise_conv_layer does not change shape if self.pointwise_conv_layer is not None: residual = residual.transpose(1, 2) residual = self.pointwise_conv_layer(residual) residual = residual.transpose(1, 2) assert residual.size(0) == x.size(0) assert residual.size(1) == x.size(1) assert residual.size(2) == x.size(2) x = residual + self.dropout(x) if not self.normalize_before: x = self.norm_conv(x) # feed forward module residual = x if self.normalize_before: x = self.norm_ff(x) x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm_ff(x) if self.conv_module is not None: x = self.norm_final(x) return x, mask, new_att_cache, new_cnn_cache