import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import PyPDFLoader from transformers import T5Tokenizer, T5ForConditionalGeneration from transformers import pipeline import torch import base64 import time from PIL import Image # Load Hugging Face banner image banner_image = Image.open("pexels-photo-796602.png") st.image(banner_image, caption="Hugging Face LaMDA Mini Summary") # Model and tokenizer model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M" model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint) model = T5ForConditionalGeneration.from_pretrained(model_checkpoint) # File loader and preprocessing def preprocess_pdf(file): loader = PyPDFLoader(file) pages = loader.load_and_split() text_splitter = RecursiveCharacterTextSplitter(chunk_size=170, chunk_overlap=70) texts = text_splitter.split_documents(pages) final_text = "" for text in texts: final_text = final_text + text.page_content return final_text @st.cache_data def language_model_pipeline(filepath): summarization_pipeline = pipeline( 'summarization', model=model, tokenizer=model_tokenizer, max_length=500, min_length=32 ) input_text = preprocess_pdf(filepath) summary_result = summarization_pipeline(input_text) summarized_text = summary_result[0]['summary_text'] return summarized_text # User interface title = st.title("PDF Summarization using LaMini") uploaded_file = st.file_uploader('Upload your PDF file', type=['pdf']) if uploaded_file is not None: st.success("File uploaded") if st.button("Summarize"): with st.spinner("Summarizing..."): time.sleep(10) filepath = uploaded_file.name with open(filepath, "wb") as temp_file: temp_file.write(uploaded_file.read()) summarized_result = language_model_pipeline(filepath) st.success("Summary:") st.write(summarized_result)