import streamlit as st import eda import model_result import prediction from streamlit_option_menu import option_menu st.sidebar.header("Emotion Classification") st.title("Facial Emotion Classification") with st.sidebar: st.write("Desti Ratna Komala - FTDS-020") selected = option_menu( "Menu", [ "Distribution", "Image Sample", "Model Result", "Classification", ], icons=["bar-chart", "link-45deg", "code-square"], menu_icon="cast", default_index=0, ) if selected == "Distribution": eda.distribution() elif selected == "Image Sample": eda.samples() elif selected == "Model Result": model_result.report() elif selected == "Classification": prediction.predict()