from __future__ import absolute_import, division, print_function from itertools import groupby import cv2 import numpy as np from skimage.morphology._skeletonize import thin def get_dict(character_dict_path): character_str = "" with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode("utf-8").strip("\n").strip("\r\n") character_str += line dict_character = list(character_str) return dict_character def softmax(logits): """ logits: N x d """ max_value = np.max(logits, axis=1, keepdims=True) exp = np.exp(logits - max_value) exp_sum = np.sum(exp, axis=1, keepdims=True) dist = exp / exp_sum return dist def get_keep_pos_idxs(labels, remove_blank=None): """ Remove duplicate and get pos idxs of keep items. The value of keep_blank should be [None, 95]. """ duplicate_len_list = [] keep_pos_idx_list = [] keep_char_idx_list = [] for k, v_ in groupby(labels): current_len = len(list(v_)) if k != remove_blank: current_idx = int(sum(duplicate_len_list) + current_len // 2) keep_pos_idx_list.append(current_idx) keep_char_idx_list.append(k) duplicate_len_list.append(current_len) return keep_char_idx_list, keep_pos_idx_list def remove_blank(labels, blank=0): new_labels = [x for x in labels if x != blank] return new_labels def insert_blank(labels, blank=0): new_labels = [blank] for l in labels: new_labels += [l, blank] return new_labels def ctc_greedy_decoder(probs_seq, blank=95, keep_blank_in_idxs=True): """ CTC greedy (best path) decoder. """ raw_str = np.argmax(np.array(probs_seq), axis=1) remove_blank_in_pos = None if keep_blank_in_idxs else blank dedup_str, keep_idx_list = get_keep_pos_idxs( raw_str, remove_blank=remove_blank_in_pos ) dst_str = remove_blank(dedup_str, blank=blank) return dst_str, keep_idx_list def instance_ctc_greedy_decoder(gather_info, logits_map, pts_num=4): _, _, C = logits_map.shape ys, xs = zip(*gather_info) logits_seq = logits_map[list(ys), list(xs)] probs_seq = logits_seq labels = np.argmax(probs_seq, axis=1) dst_str = [k for k, v_ in groupby(labels) if k != C - 1] detal = len(gather_info) // (pts_num - 1) keep_idx_list = [0] + [detal * (i + 1) for i in range(pts_num - 2)] + [-1] keep_gather_list = [gather_info[idx] for idx in keep_idx_list] return dst_str, keep_gather_list def ctc_decoder_for_image(gather_info_list, logits_map, Lexicon_Table, pts_num=6): """ CTC decoder using multiple processes. """ decoder_str = [] decoder_xys = [] for gather_info in gather_info_list: if len(gather_info) < pts_num: continue dst_str, xys_list = instance_ctc_greedy_decoder( gather_info, logits_map, pts_num=pts_num ) dst_str_readable = "".join([Lexicon_Table[idx] for idx in dst_str]) if len(dst_str_readable) < 2: continue decoder_str.append(dst_str_readable) decoder_xys.append(xys_list) return decoder_str, decoder_xys def sort_with_direction(pos_list, f_direction): """ f_direction: h x w x 2 pos_list: [[y, x], [y, x], [y, x] ...] """ def sort_part_with_direction(pos_list, point_direction): pos_list = np.array(pos_list).reshape(-1, 2) point_direction = np.array(point_direction).reshape(-1, 2) average_direction = np.mean(point_direction, axis=0, keepdims=True) pos_proj_leng = np.sum(pos_list * average_direction, axis=1) sorted_list = pos_list[np.argsort(pos_proj_leng)].tolist() sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist() return sorted_list, sorted_direction pos_list = np.array(pos_list).reshape(-1, 2) point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] # x, y point_direction = point_direction[:, ::-1] # x, y -> y, x sorted_point, sorted_direction = sort_part_with_direction(pos_list, point_direction) point_num = len(sorted_point) if point_num >= 16: middle_num = point_num // 2 first_part_point = sorted_point[:middle_num] first_point_direction = sorted_direction[:middle_num] sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction( first_part_point, first_point_direction ) last_part_point = sorted_point[middle_num:] last_point_direction = sorted_direction[middle_num:] sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction( last_part_point, last_point_direction ) sorted_point = sorted_fist_part_point + sorted_last_part_point sorted_direction = sorted_fist_part_direction + sorted_last_part_direction return sorted_point, np.array(sorted_direction) def add_id(pos_list, image_id=0): """ Add id for gather feature, for inference. """ new_list = [] for item in pos_list: new_list.append((image_id, item[0], item[1])) return new_list def sort_and_expand_with_direction(pos_list, f_direction): """ f_direction: h x w x 2 pos_list: [[y, x], [y, x], [y, x] ...] """ h, w, _ = f_direction.shape sorted_list, point_direction = sort_with_direction(pos_list, f_direction) point_num = len(sorted_list) sub_direction_len = max(point_num // 3, 2) left_direction = point_direction[:sub_direction_len, :] right_dirction = point_direction[point_num - sub_direction_len :, :] left_average_direction = -np.mean(left_direction, axis=0, keepdims=True) left_average_len = np.linalg.norm(left_average_direction) left_start = np.array(sorted_list[0]) left_step = left_average_direction / (left_average_len + 1e-6) right_average_direction = np.mean(right_dirction, axis=0, keepdims=True) right_average_len = np.linalg.norm(right_average_direction) right_step = right_average_direction / (right_average_len + 1e-6) right_start = np.array(sorted_list[-1]) append_num = max(int((left_average_len + right_average_len) / 2.0 * 0.15), 1) left_list = [] right_list = [] for i in range(append_num): ly, lx = ( np.round(left_start + left_step * (i + 1)) .flatten() .astype("int32") .tolist() ) if ly < h and lx < w and (ly, lx) not in left_list: left_list.append((ly, lx)) ry, rx = ( np.round(right_start + right_step * (i + 1)) .flatten() .astype("int32") .tolist() ) if ry < h and rx < w and (ry, rx) not in right_list: right_list.append((ry, rx)) all_list = left_list[::-1] + sorted_list + right_list return all_list def sort_and_expand_with_direction_v2(pos_list, f_direction, binary_tcl_map): """ f_direction: h x w x 2 pos_list: [[y, x], [y, x], [y, x] ...] binary_tcl_map: h x w """ h, w, _ = f_direction.shape sorted_list, point_direction = sort_with_direction(pos_list, f_direction) point_num = len(sorted_list) sub_direction_len = max(point_num // 3, 2) left_direction = point_direction[:sub_direction_len, :] right_dirction = point_direction[point_num - sub_direction_len :, :] left_average_direction = -np.mean(left_direction, axis=0, keepdims=True) left_average_len = np.linalg.norm(left_average_direction) left_start = np.array(sorted_list[0]) left_step = left_average_direction / (left_average_len + 1e-6) right_average_direction = np.mean(right_dirction, axis=0, keepdims=True) right_average_len = np.linalg.norm(right_average_direction) right_step = right_average_direction / (right_average_len + 1e-6) right_start = np.array(sorted_list[-1]) append_num = max(int((left_average_len + right_average_len) / 2.0 * 0.15), 1) max_append_num = 2 * append_num left_list = [] right_list = [] for i in range(max_append_num): ly, lx = ( np.round(left_start + left_step * (i + 1)) .flatten() .astype("int32") .tolist() ) if ly < h and lx < w and (ly, lx) not in left_list: if binary_tcl_map[ly, lx] > 0.5: left_list.append((ly, lx)) else: break for i in range(max_append_num): ry, rx = ( np.round(right_start + right_step * (i + 1)) .flatten() .astype("int32") .tolist() ) if ry < h and rx < w and (ry, rx) not in right_list: if binary_tcl_map[ry, rx] > 0.5: right_list.append((ry, rx)) else: break all_list = left_list[::-1] + sorted_list + right_list return all_list def point_pair2poly(point_pair_list): """ Transfer vertical point_pairs into poly point in clockwise. """ point_num = len(point_pair_list) * 2 point_list = [0] * point_num for idx, point_pair in enumerate(point_pair_list): point_list[idx] = point_pair[0] point_list[point_num - 1 - idx] = point_pair[1] return np.array(point_list).reshape(-1, 2) def shrink_quad_along_width(quad, begin_width_ratio=0.0, end_width_ratio=1.0): ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32) p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]]) def expand_poly_along_width(poly, shrink_ratio_of_width=0.3): """ expand poly along width. """ point_num = poly.shape[0] left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32) left_ratio = ( -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6) ) left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0) right_quad = np.array( [ poly[point_num // 2 - 2], poly[point_num // 2 - 1], poly[point_num // 2], poly[point_num // 2 + 1], ], dtype=np.float32, ) right_ratio = 1.0 + shrink_ratio_of_width * np.linalg.norm( right_quad[0] - right_quad[3] ) / (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6) right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio) poly[0] = left_quad_expand[0] poly[-1] = left_quad_expand[-1] poly[point_num // 2 - 1] = right_quad_expand[1] poly[point_num // 2] = right_quad_expand[2] return poly def restore_poly( instance_yxs_list, seq_strs, p_border, ratio_w, ratio_h, src_w, src_h, valid_set ): poly_list = [] keep_str_list = [] for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs): if len(keep_str) < 2: print("--> too short, {}".format(keep_str)) continue offset_expand = 1.0 if valid_set == "totaltext": offset_expand = 1.2 point_pair_list = [] for y, x in yx_center_line: offset = p_border[:, y, x].reshape(2, 2) * offset_expand ori_yx = np.array([y, x], dtype=np.float32) point_pair = ( (ori_yx + offset)[:, ::-1] * 4.0 / np.array([ratio_w, ratio_h]).reshape(-1, 2) ) point_pair_list.append(point_pair) detected_poly = point_pair2poly(point_pair_list) detected_poly = expand_poly_along_width( detected_poly, shrink_ratio_of_width=0.2 ) detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w) detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h) keep_str_list.append(keep_str) if valid_set == "partvgg": middle_point = len(detected_poly) // 2 detected_poly = detected_poly[[0, middle_point - 1, middle_point, -1], :] poly_list.append(detected_poly) elif valid_set == "totaltext": poly_list.append(detected_poly) else: print("--> Not supported format.") exit(-1) return poly_list, keep_str_list def generate_pivot_list_fast( p_score, p_char_maps, f_direction, Lexicon_Table, score_thresh=0.5 ): """ return center point and end point of TCL instance; filter with the char maps; """ p_score = p_score[0] f_direction = f_direction.transpose(1, 2, 0) p_tcl_map = (p_score > score_thresh) * 1.0 skeleton_map = thin(p_tcl_map.astype(np.uint8)) instance_count, instance_label_map = cv2.connectedComponents( skeleton_map.astype(np.uint8), connectivity=8 ) # get TCL Instance all_pos_yxs = [] if instance_count > 0: for instance_id in range(1, instance_count): pos_list = [] ys, xs = np.where(instance_label_map == instance_id) pos_list = list(zip(ys, xs)) if len(pos_list) < 3: continue pos_list_sorted = sort_and_expand_with_direction_v2( pos_list, f_direction, p_tcl_map ) all_pos_yxs.append(pos_list_sorted) p_char_maps = p_char_maps.transpose([1, 2, 0]) decoded_str, keep_yxs_list = ctc_decoder_for_image( all_pos_yxs, logits_map=p_char_maps, Lexicon_Table=Lexicon_Table ) return keep_yxs_list, decoded_str def extract_main_direction(pos_list, f_direction): """ f_direction: h x w x 2 pos_list: [[y, x], [y, x], [y, x] ...] """ pos_list = np.array(pos_list) point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] point_direction = point_direction[:, ::-1] # x, y -> y, x average_direction = np.mean(point_direction, axis=0, keepdims=True) average_direction = average_direction / (np.linalg.norm(average_direction) + 1e-6) return average_direction def sort_by_direction_with_image_id_deprecated(pos_list, f_direction): """ f_direction: h x w x 2 pos_list: [[id, y, x], [id, y, x], [id, y, x] ...] """ pos_list_full = np.array(pos_list).reshape(-1, 3) pos_list = pos_list_full[:, 1:] point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] # x, y point_direction = point_direction[:, ::-1] # x, y -> y, x average_direction = np.mean(point_direction, axis=0, keepdims=True) pos_proj_leng = np.sum(pos_list * average_direction, axis=1) sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist() return sorted_list def sort_by_direction_with_image_id(pos_list, f_direction): """ f_direction: h x w x 2 pos_list: [[y, x], [y, x], [y, x] ...] """ def sort_part_with_direction(pos_list_full, point_direction): pos_list_full = np.array(pos_list_full).reshape(-1, 3) pos_list = pos_list_full[:, 1:] point_direction = np.array(point_direction).reshape(-1, 2) average_direction = np.mean(point_direction, axis=0, keepdims=True) pos_proj_leng = np.sum(pos_list * average_direction, axis=1) sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist() sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist() return sorted_list, sorted_direction pos_list = np.array(pos_list).reshape(-1, 3) point_direction = f_direction[pos_list[:, 1], pos_list[:, 2]] # x, y point_direction = point_direction[:, ::-1] # x, y -> y, x sorted_point, sorted_direction = sort_part_with_direction(pos_list, point_direction) point_num = len(sorted_point) if point_num >= 16: middle_num = point_num // 2 first_part_point = sorted_point[:middle_num] first_point_direction = sorted_direction[:middle_num] sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction( first_part_point, first_point_direction ) last_part_point = sorted_point[middle_num:] last_point_direction = sorted_direction[middle_num:] sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction( last_part_point, last_point_direction ) sorted_point = sorted_fist_part_point + sorted_last_part_point sorted_direction = sorted_fist_part_direction + sorted_last_part_direction return sorted_point