import streamlit as st import pandas as pd # To make things easier later, we're also importing numpy and pandas for # working with sample data. from sentence_transformers import SentenceTransformer import faiss import numpy as np # Load the moka-ai/m3e-base model model = SentenceTransformer("moka-ai/m3e-base") # Encode the documents into embeddings documents = ["班车线路", "兴趣小组", "财务报销"] document_embeddings = model.encode(documents) # Store the embeddings to FAISS index = faiss.IndexFlatIP(document_embeddings.shape[1]) index.add(document_embeddings) # Encode the query into an embedding query = "报销餐费" query_embedding = model.encode([query])[0] # Search the FAISS index for the most similar document D, I = index.search(np.array([query_embedding]), k=1) # Print the most similar document st.write('Most similar document: ', documents[I[0][0]]) #====================================================================== st.title('My first app') st.write("Here's our first attempt at using data to create a table:") df = pd.DataFrame({ 'first column': [1, 2, 3, 4], 'second column': [10, 20, 30, 40] }) st.write(df) if st.checkbox('Show dataframe'): chart_data = pd.DataFrame( np.random.randn(20, 3), columns=['a', 'b', 'c']) chart_data option = st.selectbox( 'Which number do you like best?', df['first column']) st.write('You selected: ', option) text1 = st.text('This is some text.') if st.button('Say hello'): st.write('Why hello there') else: st.write('Goodbye') agree = st.checkbox('I agree') if agree: st.write('Great!') age = st.slider('How old are you?', 0, 130, 25) st.write("I'm ", age, 'years old') title = st.text_input('Movie title', 'Life of Brian') st.write('The current movie title is', title) number = st.number_input('Insert a number') st.write('The current number is ', number)