import time from pathlib import Path import gradio as gr # import onnxruntime as rt from audio_separator.separator import Separator from pydub import AudioSegment from pytube import YouTube available_model = ["UVR-MDX-NET-Inst_HQ_3", "UVR-MDX-NET-Voc_FT", "UVR_MDXNET_KARA_2", "Kim_Vocal_2", "UVR_MDXNET_Main"] base_path = Path(__file__).parent def reduce_audio_size(audio_path): s1 = AudioSegment.from_file(audio_path) s1.export(audio_path, format="mp3", bitrate="64k") def audio_sep(youtube_url, audio_path, separation_model, separation_mode, progress=gr.Progress()): out_folder = base_path / "audio_filtered" out_folder.mkdir(exist_ok=True) temp_folder = base_path / "tmp" temp_folder.mkdir(exist_ok=True) print(youtube_url) print(audio_path) print(separation_model) print(separation_mode) youtube_url = youtube_url.strip() if youtube_url is not None and youtube_url != "": try: print("Downloading YouTube audio...") yt = YouTube(youtube_url) video_id = yt.video_id save_audio_path = temp_folder / f"{video_id}.mp3" if yt.length > 5 * 60: raise gr.Error("Video too long. Please use a video shorter than 5 minutes.") stream = yt.streams.filter(only_audio=True).order_by("abr").desc().first() stream.download(filename=str(save_audio_path)) audio_path = str(save_audio_path) print("Downloaded YouTube audio") except: gr.Info("Something went wrong. Skipping to second input.") if audio_path is None: gr.Info("Please input an audio file or YouTube URL.") return None, None if len(separation_mode) == 1: separation_mode = separation_mode[0] elif len(separation_mode) == 0: return None, None else: separation_mode = None progress(0, desc="Starting...") separator = Separator( # audio_path, # model_name=separation_model, # use_cuda=True if rt.get_device() == "GPU" else False output_dir=str(out_folder), output_single_stem=separation_mode, ) separator.load_model(separation_model) # for i in progress.tqdm(range(50)): # time.sleep(0.01) results = [out_folder / p for p in separator.separate(audio_path)] print(results) # for i in progress.tqdm(range(50, 100)): # time.sleep(0.01) if separation_mode == "Instrument": instrument_stem_path = str(results[0]) reduce_audio_size(instrument_stem_path) vocal_stem_path = None elif separation_mode == "Vocal": instrument_stem_path = None vocal_stem_path = str(results[0]) reduce_audio_size(vocal_stem_path) else: if "_(Instrumental)_" in str(results[0]): instrument_stem_path = str(results[0]) reduce_audio_size(instrument_stem_path) vocal_stem_path = str(results[1]) reduce_audio_size(vocal_stem_path) else: vocal_stem_path = str(results[0]) reduce_audio_size(vocal_stem_path) instrument_stem_path = str(results[1]) reduce_audio_size(instrument_stem_path) return instrument_stem_path, vocal_stem_path gr.Interface( audio_sep, [ gr.Textbox( label="YouTube video URL (No videos more than 5 mins)", placeholder="https://www.youtube.com/watch?v=XXXXXXXXXXX", ), gr.Audio(label="Audio Input", type="filepath"), gr.Dropdown(available_model, label="Separation Model", value="UVR_MDXNET_KARA_2"), gr.CheckboxGroup(choices=["Instrument", "Vocal"], label="Separation Mode", value=["Instrument", "Vocal"]), ], [gr.Audio(label="Music/Instrument Output", type="filepath"), gr.Audio(label="Vocal Output", type="filepath")], title="Audio Separator", description="
Separate the music and vocal from the input audio
", allow_flagging=False, ).queue().launch(share=False)