import json import os import random from functools import partial from pathlib import Path from typing import List import deepinv as dinv import gradio as gr import torch from PIL import Image from torchvision import transforms from evals import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric DEVICE_STR = 'cuda' ### Gradio Utils def generate_imgs_from_dataset(dataset: EvalDataset, idx: int, model: EvalModel, baseline: BaselineModel, physics: PhysicsWithGenerator, use_gen: bool, metrics: List[Metric]): ### Load 1 image x = dataset[idx] # shape : (3, 256, 256) x = x.unsqueeze(0) # shape : (1, 3, 256, 256) return generate_imgs(x, model, baseline, physics, use_gen, metrics) def generate_imgs_from_user(image, model: EvalModel, baseline: BaselineModel, physics: PhysicsWithGenerator, use_gen: bool, metrics: List[Metric]): if image is None: return None, None, None, None, None, None, None, None # PIL image -> torch.Tensor x = transforms.ToTensor()(image).unsqueeze(0).to('cuda') return generate_imgs(x, model, baseline, physics, use_gen, metrics) def generate_imgs(x: torch.Tensor, model: EvalModel, baseline: BaselineModel, physics: PhysicsWithGenerator, use_gen: bool, metrics: List[Metric]): with torch.no_grad(): ### Compute y y = physics(x, use_gen) # possible reduction in img shape due to Blurring ### Compute x_hat out = model(y=y, physics=physics.physics) out_baseline = baseline(y=y, physics=physics.physics) ### Process tensors before metric computation if "Blur" in physics.name: w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2 h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2 x = x[..., w_1:w_2, h_1:h_2] out = out[..., w_1:w_2, h_1:h_2] if out_baseline.shape != out.shape: out_baseline = out_baseline[..., w_1:w_2, h_1:h_2] ### Metrics metrics_y = "" metrics_out = "" metrics_out_baseline = "" for metric in metrics: if y.shape == x.shape: metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n" metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n" metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n" ### Process y when y shape is different from x shape if physics.name == "MRI" or "SR" in physics.name: y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4) else: y_plot = y.clone() ### Processing images for plotting : # - clip value outside of [0,1] # - shape (1, C, H, W) -> (C, H, W) # - torch.Tensor object -> Pil object process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip") to_pil = transforms.ToPILImage() x = to_pil(process_img(x)[0].to('cpu')) y = to_pil(process_img(y_plot)[0].to('cpu')) out = to_pil(process_img(out)[0].to('cpu')) out_baseline = to_pil(process_img(out_baseline)[0].to('cpu')) return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline def generate_random_imgs_from_dataset(dataset: EvalDataset, model: EvalModel, baseline: BaselineModel, physics: PhysicsWithGenerator, use_gen: bool, metrics: List[Metric]): idx = random.randint(0, len(dataset)-1) x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset( dataset, idx, model, baseline, physics, use_gen, metrics ) return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR) get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR) get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR) get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR) get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR) AVAILABLE_PHYSICS = PhysicsWithGenerator.all_physics def get_dataset(dataset_name): global AVAILABLE_PHYSICS if dataset_name == 'MRI': AVAILABLE_PHYSICS = ['MRI'] baseline_name = 'DPIR_MRI' physics_name = 'MRI' elif dataset_name == 'CT': AVAILABLE_PHYSICS = ['CT'] baseline_name = 'DPIR_CT' physics_name = 'CT' else: AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard', 'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard'] baseline_name = 'DPIR' physics_name = 'MotionBlur_easy' return get_dataset_on_DEVICE_STR(dataset_name), get_physics_on_DEVICE_STR(physics_name), get_baseline_model_on_DEVICE_STR(baseline_name) ### Gradio Blocks interface # Define custom CSS custom_css = """ .fixed-textbox textarea { height: 90px !important; /* Adjust height to fit exactly 4 lines */ overflow: scroll; /* Add a scroll bar if necessary */ resize: none; /* User can resize vertically the textbox */ } """ title = "Inverse problem playground" # displayed on gradio tab and in the gradio page with gr.Blocks(title=title, css=custom_css) as interface: gr.Markdown("## " + title) # Loading things model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", "")) # lambda expression to instanciate a callable in a gr.State model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR")) # lambda expression to instanciate a callable in a gr.State dataset_placeholder = gr.State(lambda: get_dataset("Natural")) physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy")) # lambda expression to instanciate a callable in a gr.State metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"])) @gr.render(inputs=[dataset_placeholder, physics_placeholder, metrics_placeholder]) def dynamic_layout(dataset, physics, metrics): ### LAYOUT dataset_name = dataset.name physics_name = physics.name metric_names = [metric.name for metric in metrics] # Components: Inputs/Outputs + Load EvalDataset/PhysicsWithGenerator/EvalModel/BaselineModel with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=True) physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params()) with gr.Column(): y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False) y_metrics = gr.Textbox(label="Metrics(y, x)", elem_classes=["fixed-textbox"],) choose_physics = gr.Radio(choices=AVAILABLE_PHYSICS, label="List of PhysicsWithGenerator", value=physics_name) with gr.Row(): key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()), label="Updatable Parameter Key", scale=2) value_text = gr.Textbox(label="Update Value", scale=2) update_button = gr.Button("Manually update parameter value", scale=1) with gr.Column(): with gr.Row(): with gr.Column(): model_a_out = gr.Image(label="RAM OUTPUT", interactive=False) out_a_metric = gr.Textbox(label="Metrics(RAM(y, physics), x)", elem_classes=["fixed-textbox"]) with gr.Column(): model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False) out_b_metric = gr.Textbox(label="Metrics(DPIR(y, physics), x)", elem_classes=["fixed-textbox"]) with gr.Row(): choose_dataset = gr.Radio(choices=EvalDataset.all_datasets, label="List of EvalDataset", value=dataset_name, scale=2) idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", scale=1) # Components: Load Metric + Load image Buttons with gr.Row(): with gr.Column(scale=3): choose_metrics = gr.CheckboxGroup(choices=Metric.all_metrics, value=metric_names, label="Choose metrics you are interested") use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1) run_button = gr.Button("Run current image", scale=1) with gr.Column(scale=1): load_button = gr.Button("Load images from dataset...") load_random_button = gr.Button("Load randomly from dataset...") ### Event listeners choose_dataset.change(fn=get_dataset, inputs=choose_dataset, outputs=[dataset_placeholder, physics_placeholder, model_b_placeholder]) choose_physics.change(fn=get_physics_on_DEVICE_STR, inputs=choose_physics, outputs=[physics_placeholder]) update_button.click(fn=physics.update_and_display_params, inputs=[key_selector, value_text], outputs=physics_params) choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR, inputs=choose_metrics, outputs=metrics_placeholder) run_button.click(fn=generate_imgs_from_user, inputs=[clean, model_a_placeholder, model_b_placeholder, physics_placeholder, use_generator_button, metrics_placeholder], outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric]) load_button.click(fn=generate_imgs_from_dataset, inputs=[dataset_placeholder, idx_slider, model_a_placeholder, model_b_placeholder, physics_placeholder, use_generator_button, metrics_placeholder], outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric]) load_random_button.click(fn=generate_random_imgs_from_dataset, inputs=[dataset_placeholder, model_a_placeholder, model_b_placeholder, physics_placeholder, use_generator_button, metrics_placeholder], outputs=[idx_slider, clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric]) interface.launch()