import torch from transformers import pipeline, SiglipModel, AutoProcessor import numpy as np import gradio as gr clip_checkpoint = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification") def postprocess(output): return {out["label"]: float(out["score"]) for out in output} def infer(image, candidate_labels): candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] clip_out = clip_detector(image, candidate_labels=candidate_labels) return postprocess(clip_out) def update_top_classes(num_classes): return with gr.Blocks() as demo: gr.Markdown("# Compare CLIP and SigLIP") gr.Markdown("Compare the performance of CLIP and SigLIP on zero-shot classification in this Space 👇") with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil") text_input = gr.Textbox(label="Input a list of labels") slider = gr.Slider(minimum=3, maximum=20, step=1, value=3, label="Number of Top Classes") run_button = gr.Button("Run", visible=True) with gr.Column(): clip_output = gr.Label(label = "CLIP Output", num_top_classes=3) examples = [["./baklava.jpg", "baklava, souffle, tiramisu"]] gr.Examples( examples = examples, inputs=[image_input, text_input], outputs=[clip_output, ], fn=infer, cache_examples=True ) slider.change( fn=update_top_classes, inputs=slider, outputs=clip_output, _js="(i) => ({ 'num_top_classes': i })" ) run_button.click(fn=infer, inputs=[image_input, text_input], outputs=[clip_output, ]) demo.launch()