Spaces:
Running
Running
File size: 1,968 Bytes
90b4364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import logging
import os
import shutil
from functools import lru_cache
from typing import Optional
from hbutils.system import pip_install
def _ensure_onnxruntime():
try:
import onnxruntime
except (ImportError, ModuleNotFoundError):
logging.warning('Onnx runtime not installed, preparing to install ...')
if shutil.which('nvidia-smi'):
logging.info('Installing onnxruntime-gpu ...')
pip_install(['onnxruntime-gpu'], silent=True)
else:
logging.info('Installing onnxruntime (cpu) ...')
pip_install(['onnxruntime'], silent=True)
_ensure_onnxruntime()
from onnxruntime import get_available_providers, get_all_providers, InferenceSession, SessionOptions, \
GraphOptimizationLevel
alias = {
'gpu': "CUDAExecutionProvider",
"trt": "TensorrtExecutionProvider",
}
def get_onnx_provider(provider: Optional[str] = None):
if not provider:
if "CUDAExecutionProvider" in get_available_providers():
return "CUDAExecutionProvider"
else:
return "CPUExecutionProvider"
elif provider.lower() in alias:
return alias[provider.lower()]
else:
for p in get_all_providers():
if provider.lower() == p.lower() or f'{provider}ExecutionProvider'.lower() == p.lower():
return p
raise ValueError(f'One of the {get_all_providers()!r} expected, '
f'but unsupported provider {provider!r} found.')
@lru_cache()
def _open_onnx_model(ckpt: str, provider: str = None) -> InferenceSession:
options = SessionOptions()
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
provider = provider or get_onnx_provider()
if provider == "CPUExecutionProvider":
options.intra_op_num_threads = os.cpu_count()
logging.info(f'Model {ckpt!r} loaded with provider {provider!r}')
return InferenceSession(ckpt, options, [provider])
|