import time from fastapi import FastAPI, Request, HTTPException from pydantic import BaseModel from g4f.client import Client import uvicorn app = FastAPI() API_PREFIX = "/" # Middleware for logging request time @app.middleware("http") async def log_process_time(request: Request, call_next): start_time = time.time() response = await call_next(request) process_time = time.time() - start_time print(f"{request.method} {response.status_code} {request.url.path} {process_time*1000:.2f} ms") return response # Request body model class ChatCompletionRequest(BaseModel): model: str messages: list[dict] @app.get("/") async def root(): return {"message": "API server running"} @app.get("/ping") async def ping(): return {"message": "pong"} @app.get(f"{API_PREFIX}v1/models") async def get_models(): return { "object": "list", "data": [ {"id": "gpt-4o-mini", "object": "model", "owned_by": "ddg"}, {"id": "claude-3-haiku", "object": "model", "owned_by": "ddg"}, {"id": "llama-3.1-70b", "object": "model", "owned_by": "ddg"}, {"id": "mixtral-8x7b", "object": "model", "owned_by": "ddg"}, {"id": "o3-mini", "object": "model", "owned_by": "ddg"}, ], } @app.post(f"{API_PREFIX}v1/chat/completions") async def chat_completions(request: ChatCompletionRequest): try: # Only using DuckAI directly content = " ".join([msg.get("content", "") for msg in request.messages]) client = Client() response = client.chat.completions.create( model=request.model, messages=[{"role": "user", "content": content}], web_search=False ) return response except Exception as e: raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)