import os import tempfile import shutil import logging os.system('pip install paddlepaddle==2.4.2') os.system('pip install paddleocr') from paddleocr import PaddleOCR, draw_ocr from PIL import Image import gradio as gr import torch from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import FileResponse import uvicorn # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) CUSTOM_PATH = "/gradio" app = FastAPI() @app.get("/") def read_main(): return {"message": "This is your main app"} io = gr.Interface(lambda x: "Hello, " + x + "!", "textbox", "textbox") torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg') @app.post("/ocr/") async def ocr_endpoint(img: UploadFile = File(...), lang: str = Form(...)): logger.info("Processing OCR request") # Save the uploaded image to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img: shutil.copyfileobj(img.file, temp_img) img_path = temp_img.name # Perform OCR ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False) result = ocr.ocr(img_path, cls=True)[0] boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] image = Image.open(img_path).convert('RGB') im_show = draw_ocr(image, boxes, txts=None, scores=None, font_path='simfang.ttf') im_show = Image.fromarray(im_show) result_img_path = 'result.jpg' im_show.save(result_img_path) # Prepare the response response_data = { "result_image": result_img_path, "ocr_result": result, "extracted_text": '\n'.join(txts) } logger.info("OCR request processed successfully") return response_data app = gr.mount_gradio_app(app, io, path=CUSTOM_PATH) uvicorn.run(app, host="0.0.0.0", port=7860)