import cv2 import mediapipe as mp import numpy as np def extract_keypoints_from_video(video_path, verbose=False): mp_pose = mp.solutions.pose mp_hands = mp.solutions.hands pose_model = mp_pose.Pose() hands_model = mp_hands.Hands(static_image_mode=False, max_num_hands=2) cap = cv2.VideoCapture(video_path) keypoints_sequence = [] frame_idx = 0 while cap.isOpened(): success, frame = cap.read() if not success: break frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) h, w, _ = frame.shape # Pose estimation pose_results = pose_model.process(frame_rgb) if not pose_results.pose_landmarks: frame_idx += 1 continue # Extract 33 body keypoints pose_landmarks = pose_results.pose_landmarks.landmark pose = np.array([[lm.x, lm.y] for lm in pose_landmarks]) # shape (33, 2) # Hand tracking left_hand = np.zeros((21, 2)) right_hand = np.zeros((21, 2)) hand_results = hands_model.process(frame_rgb) if hand_results.multi_hand_landmarks and hand_results.multi_handedness: for hand_landmarks, hand_info in zip(hand_results.multi_hand_landmarks, hand_results.multi_handedness): label = hand_info.classification[0].label # 'Left' or 'Right' hand_array = np.array([[lm.x, lm.y] for lm in hand_landmarks.landmark]) if label == "Left": left_hand = hand_array else: right_hand = hand_array keypoints_sequence.append((pose, left_hand, right_hand)) if verbose: print(f"Processed frame {frame_idx}") frame_idx += 1 cap.release() pose_model.close() hands_model.close() return keypoints_sequence def render_person(frame, pose, left_hand, right_hand): h, w = frame.shape[:2] # Define MediaPipe Pose keypoint indices # Face NOSE = 0 LEFT_EYE = 2 RIGHT_EYE = 5 LEFT_EAR = 7 RIGHT_EAR = 8 # Body LEFT_SHOULDER = 11 RIGHT_SHOULDER = 12 LEFT_ELBOW = 13 RIGHT_ELBOW = 14 LEFT_WRIST = 15 RIGHT_WRIST = 16 LEFT_HIP = 23 RIGHT_HIP = 24 LEFT_KNEE = 25 RIGHT_KNEE = 26 LEFT_ANKLE = 27 RIGHT_ANKLE = 28 # Define hand keypoint indices for MediaPipe Hands # Thumb: 0-4, Index: 5-8, Middle: 9-12, Ring: 13-16, Pinky: 17-20 THUMB_TIP = 4 INDEX_TIP = 8 MIDDLE_TIP = 12 RING_TIP = 16 PINKY_TIP = 20 # Define finger connections finger_connections = [ # Thumb (0, 1), (1, 2), (2, 3), (3, 4), # Index finger (0, 5), (5, 6), (6, 7), (7, 8), # Middle finger (0, 9), (9, 10), (10, 11), (11, 12), # Ring finger (0, 13), (13, 14), (14, 15), (15, 16), # Pinky (0, 17), (17, 18), (18, 19), (19, 20) ] # Enhanced friendly color palette skin_color = (173, 216, 230) # Light brown bear skin outline_color = (40, 40, 40) # Softer outline shirt_color = (205, 170, 125) # Light blue tuxedo jacket # shirt_color = (205, 170, 125) # skin_color = (173, 216, 230) pants_color = (135, 206, 235) # Slightly darker light blue tuxedo pants bow_tie_color = (255, 255, 255) # White bow tie eye_color = (255, 255, 255) # White eyes pupil_color = (0, 0, 0) # Black pupils # Draw body parts as filled shapes # 1. Head (face) with enhanced friendly styling if len(pose) > max(LEFT_EYE, RIGHT_EYE, LEFT_EAR, RIGHT_EAR): # Calculate head center and size head_center_x = pose[NOSE][0] * w head_center_y = pose[NOSE][1] * h # Estimate head size based on face keypoints if pose[LEFT_EYE][0] > 0 and pose[RIGHT_EYE][0] > 0: eye_distance = abs(pose[LEFT_EYE][0] - pose[RIGHT_EYE][0]) * w head_radius = eye_distance * 1.8 # Larger head for friendlier look else: head_radius = 35 # Draw bear ears first (behind the head) ear_radius = int(head_radius * 0.4) # Left ear left_ear_x = int(head_center_x - head_radius * 0.6) left_ear_y = int(head_center_y - head_radius * 0.8) cv2.circle(frame, (left_ear_x, left_ear_y), ear_radius, skin_color, -1) cv2.circle(frame, (left_ear_x, left_ear_y), ear_radius, outline_color, 2) # Inner ear detail cv2.circle(frame, (left_ear_x, left_ear_y), int(ear_radius * 0.6), (120, 160, 180), -1) # Right ear right_ear_x = int(head_center_x + head_radius * 0.6) right_ear_y = int(head_center_y - head_radius * 0.8) cv2.circle(frame, (right_ear_x, right_ear_y), ear_radius, skin_color, -1) cv2.circle(frame, (right_ear_x, right_ear_y), ear_radius, outline_color, 2) # Inner ear detail cv2.circle(frame, (right_ear_x, right_ear_y), int(ear_radius * 0.6), (120, 160, 180), -1) # Draw head with skin color cv2.circle(frame, (int(head_center_x), int(head_center_y)), int(head_radius), skin_color, -1) cv2.circle(frame, (int(head_center_x), int(head_center_y)), int(head_radius), outline_color, 2) # Draw larger, cuter bear eyes if pose[LEFT_EYE][0] > 0 and pose[LEFT_EYE][1] > 0: eye_x, eye_y = int(pose[LEFT_EYE][0] * w), int(pose[LEFT_EYE][1] * h) # Larger white eye cv2.circle(frame, (eye_x, eye_y), 10, eye_color, -1) # Larger pupil cv2.circle(frame, (eye_x, eye_y), 6, pupil_color, -1) # Eye outline cv2.circle(frame, (eye_x, eye_y), 10, outline_color, 1) # Eye shine cv2.circle(frame, (eye_x-3, eye_y-3), 3, (255, 255, 255), -1) if pose[RIGHT_EYE][0] > 0 and pose[RIGHT_EYE][1] > 0: eye_x, eye_y = int(pose[RIGHT_EYE][0] * w), int(pose[RIGHT_EYE][1] * h) # Larger white eye cv2.circle(frame, (eye_x, eye_y), 10, eye_color, -1) # Larger pupil cv2.circle(frame, (eye_x, eye_y), 6, pupil_color, -1) # Eye outline cv2.circle(frame, (eye_x, eye_y), 10, outline_color, 1) # Eye shine cv2.circle(frame, (eye_x-3, eye_y-3), 3, (255, 255, 255), -1) # Draw cute bear nose nose_x = int(head_center_x) nose_y = int(head_center_y + head_radius * 0.1) # Draw a cute round nose cv2.circle(frame, (nose_x, nose_y), 6, (80, 40, 20), -1) # Dark brown nose cv2.circle(frame, (nose_x, nose_y), 6, outline_color, 1) # Draw friendly smile smile_center_x = int(head_center_x) smile_center_y = int(head_center_y + head_radius * 0.3) smile_radius = int(head_radius * 0.6) # Draw smile arc cv2.ellipse(frame, (smile_center_x, smile_center_y), (smile_radius, smile_radius//2), 0, 0, 180, outline_color, 3) # 2. Torso with nice shirt if len(pose) > max(LEFT_SHOULDER, RIGHT_SHOULDER, LEFT_HIP, RIGHT_HIP): # Calculate torso points left_shoulder = (int(pose[LEFT_SHOULDER][0] * w), int(pose[LEFT_SHOULDER][1] * h)) right_shoulder = (int(pose[RIGHT_SHOULDER][0] * w), int(pose[RIGHT_SHOULDER][1] * h)) left_hip = (int(pose[LEFT_HIP][0] * w), int(pose[LEFT_HIP][1] * h)) right_hip = (int(pose[RIGHT_HIP][0] * w), int(pose[RIGHT_HIP][1] * h)) # Draw torso as a filled polygon with nice shirt color torso_points = np.array([left_shoulder, right_shoulder, right_hip, left_hip], np.int32) cv2.fillPoly(frame, [torso_points], shirt_color) cv2.polylines(frame, [torso_points], True, outline_color, 2) # 3. Arms with better proportions (non-stick) # Left arm if len(pose) > max(LEFT_SHOULDER, LEFT_ELBOW, LEFT_WRIST): if pose[LEFT_SHOULDER][0] > 0 and pose[LEFT_ELBOW][0] > 0: # Upper arm - 3x thicker and more natural cv2.line(frame, (int(pose[LEFT_SHOULDER][0] * w), int(pose[LEFT_SHOULDER][1] * h)), (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)), skin_color, 36) cv2.line(frame, (int(pose[LEFT_SHOULDER][0] * w), int(pose[LEFT_SHOULDER][1] * h)), (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)), outline_color, 2) # Lower arm if pose[LEFT_WRIST][0] > 0: cv2.line(frame, (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)), (int(pose[LEFT_WRIST][0] * w), int(pose[LEFT_WRIST][1] * h)), skin_color, 30) cv2.line(frame, (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)), (int(pose[LEFT_WRIST][0] * w), int(pose[LEFT_WRIST][1] * h)), outline_color, 2) # Right arm if len(pose) > max(RIGHT_SHOULDER, RIGHT_ELBOW, RIGHT_WRIST): if pose[RIGHT_SHOULDER][0] > 0 and pose[RIGHT_ELBOW][0] > 0: # Upper arm - 3x thicker and more natural cv2.line(frame, (int(pose[RIGHT_SHOULDER][0] * w), int(pose[RIGHT_SHOULDER][1] * h)), (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)), skin_color, 36) cv2.line(frame, (int(pose[RIGHT_SHOULDER][0] * w), int(pose[RIGHT_SHOULDER][1] * h)), (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)), outline_color, 2) # Lower arm if pose[RIGHT_WRIST][0] > 0: cv2.line(frame, (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)), (int(pose[RIGHT_WRIST][0] * w), int(pose[RIGHT_WRIST][1] * h)), skin_color, 30) cv2.line(frame, (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)), (int(pose[RIGHT_WRIST][0] * w), int(pose[RIGHT_WRIST][1] * h)), outline_color, 2) # 4. Legs with nice pants # Left leg if len(pose) > max(LEFT_HIP, LEFT_KNEE, LEFT_ANKLE): if pose[LEFT_HIP][0] > 0 and pose[LEFT_KNEE][0] > 0: # Upper leg cv2.line(frame, (int(pose[LEFT_HIP][0] * w), int(pose[LEFT_HIP][1] * h)), (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)), pants_color, 14) cv2.line(frame, (int(pose[LEFT_HIP][0] * w), int(pose[LEFT_HIP][1] * h)), (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)), outline_color, 2) # Lower leg if pose[LEFT_ANKLE][0] > 0: cv2.line(frame, (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)), (int(pose[LEFT_ANKLE][0] * w), int(pose[LEFT_ANKLE][1] * h)), pants_color, 12) cv2.line(frame, (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)), (int(pose[LEFT_ANKLE][0] * w), int(pose[LEFT_ANKLE][1] * h)), outline_color, 2) # Right leg if len(pose) > max(RIGHT_HIP, RIGHT_KNEE, RIGHT_ANKLE): if pose[RIGHT_HIP][0] > 0 and pose[RIGHT_KNEE][0] > 0: # Upper leg cv2.line(frame, (int(pose[RIGHT_HIP][0] * w), int(pose[RIGHT_HIP][1] * h)), (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)), pants_color, 14) cv2.line(frame, (int(pose[RIGHT_HIP][0] * w), int(pose[RIGHT_HIP][1] * h)), (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)), outline_color, 2) # Lower leg if pose[RIGHT_ANKLE][0] > 0: cv2.line(frame, (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)), (int(pose[RIGHT_ANKLE][0] * w), int(pose[RIGHT_ANKLE][1] * h)), pants_color, 12) cv2.line(frame, (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)), (int(pose[RIGHT_ANKLE][0] * w), int(pose[RIGHT_ANKLE][1] * h)), outline_color, 2) # 1.5. Neck connecting head to shoulders if len(pose) > max(LEFT_SHOULDER, RIGHT_SHOULDER): if pose[LEFT_SHOULDER][0] > 0 and pose[RIGHT_SHOULDER][0] > 0: # Calculate neck position and size neck_center_x = (pose[LEFT_SHOULDER][0] + pose[RIGHT_SHOULDER][0]) / 2 * w neck_center_y = (pose[LEFT_SHOULDER][1] + pose[RIGHT_SHOULDER][1]) / 2 * h # Position neck slightly above shoulders neck_y = neck_center_y - 15 # Calculate neck width based on shoulder distance shoulder_distance = abs(pose[LEFT_SHOULDER][0] - pose[RIGHT_SHOULDER][0]) * w neck_width = shoulder_distance * 0.3 # Neck is about 30% of shoulder width neck_height = 25 # Draw neck as a filled rectangle with rounded corners effect neck_left = int(neck_center_x - neck_width / 2) neck_right = int(neck_center_x + neck_width / 2) neck_top = int(neck_y - neck_height / 2) neck_bottom = int(neck_y + neck_height / 2) # Draw neck with skin color cv2.rectangle(frame, (neck_left, neck_top), (neck_right, neck_bottom), skin_color, -1) cv2.rectangle(frame, (neck_left, neck_top), (neck_right, neck_bottom), outline_color, 2) # Draw bow tie bow_center_x = int(neck_center_x) bow_center_y = int(neck_y + neck_height / 2 + 5) bow_width = 20 bow_height = 12 # Draw left side of bow tie left_bow_points = np.array([ [bow_center_x - bow_width//2, bow_center_y - bow_height//2], [bow_center_x - bow_width//2 - 8, bow_center_y], [bow_center_x - bow_width//2, bow_center_y + bow_height//2], [bow_center_x - 2, bow_center_y + bow_height//2], [bow_center_x - 2, bow_center_y - bow_height//2] ], np.int32) cv2.fillPoly(frame, [left_bow_points], bow_tie_color) cv2.polylines(frame, [left_bow_points], True, outline_color, 1) # Draw right side of bow tie right_bow_points = np.array([ [bow_center_x + bow_width//2, bow_center_y - bow_height//2], [bow_center_x + bow_width//2 + 8, bow_center_y], [bow_center_x + bow_width//2, bow_center_y + bow_height//2], [bow_center_x + 2, bow_center_y + bow_height//2], [bow_center_x + 2, bow_center_y - bow_height//2] ], np.int32) cv2.fillPoly(frame, [right_bow_points], bow_tie_color) cv2.polylines(frame, [right_bow_points], True, outline_color, 1) # Draw center knot of bow tie knot_points = np.array([ [bow_center_x - 2, bow_center_y - 3], [bow_center_x + 2, bow_center_y - 3], [bow_center_x + 2, bow_center_y + 3], [bow_center_x - 2, bow_center_y + 3] ], np.int32) cv2.fillPoly(frame, [knot_points], bow_tie_color) cv2.polylines(frame, [knot_points], True, outline_color, 1) # 5. Enhanced Hands with clear finger definition (drawn last to ensure they're always in front) for hand, hand_color in [(left_hand, (255, 0, 0)), (right_hand, (0, 0, 255))]: if np.any(hand != 0): # Only draw if hand is detected # Draw hand palm as a filled shape palm_points = [] # Use wrist and base of fingers for palm palm_indices = [0, 5, 9, 13, 17] # Wrist and base of each finger for idx in palm_indices: if idx < len(hand) and hand[idx][0] > 0 and hand[idx][1] > 0: palm_points.append([int(hand[idx][0] * w), int(hand[idx][1] * h)]) if len(palm_points) > 3: palm_points = np.array(palm_points, np.int32) hull = cv2.convexHull(palm_points) cv2.fillPoly(frame, [hull], (255, 182, 193)) # Light pink color for palm cv2.polylines(frame, [hull], True, outline_color, 2) # Draw individual fingers with clear connections for connection in finger_connections: start_idx, end_idx = connection if (start_idx < len(hand) and end_idx < len(hand) and hand[start_idx][0] > 0 and hand[start_idx][1] > 0 and hand[end_idx][0] > 0 and hand[end_idx][1] > 0): start_point = (int(hand[start_idx][0] * w), int(hand[start_idx][1] * h)) end_point = (int(hand[end_idx][0] * w), int(hand[end_idx][1] * h)) # Draw finger bone cv2.line(frame, start_point, end_point, (255, 182, 193), 9) # Light pink color for finger bones cv2.line(frame, start_point, end_point, outline_color, 1) # Draw finger tips with emphasis finger_tips = [THUMB_TIP, INDEX_TIP, MIDDLE_TIP, RING_TIP, PINKY_TIP] for tip_idx in finger_tips: if tip_idx < len(hand) and hand[tip_idx][0] > 0 and hand[tip_idx][1] > 0: tip_x, tip_y = int(hand[tip_idx][0] * w), int(hand[tip_idx][1] * h) # Draw larger, more visible finger tips cv2.circle(frame, (tip_x, tip_y), 4, (255, 182, 193), -1) # Light pink color for finger tips cv2.circle(frame, (tip_x, tip_y), 4, outline_color, 2) # Add a small highlight cv2.circle(frame, (tip_x-1, tip_y-1), 1, (255, 255, 255), -1) # Draw all hand keypoints for clarity (keeping original red/blue colors for dots) for i, (x, y) in enumerate(hand): if x > 0 and y > 0: point_x, point_y = int(x * w), int(y * h) # Different colors for different parts of the hand if i in finger_tips: cv2.circle(frame, (point_x, point_y), 2, hand_color, -1) else: cv2.circle(frame, (point_x, point_y), 1, hand_color, -1) return frame def interpolate_keypoints(kptsA, kptsB, steps): poseA, leftA, rightA = kptsA poseB, leftB, rightB = kptsB frames = [] for t in range(1, steps + 1): alpha = t / (steps + 1) interp_pose = (1 - alpha) * poseA + alpha * poseB # Check if hands are detected (non-zero coordinates) leftA_detected = np.any(leftA != 0) rightA_detected = np.any(rightA != 0) leftB_detected = np.any(leftB != 0) rightB_detected = np.any(rightB != 0) # Interpolate left hand only if both frames have detected hands if leftA_detected and leftB_detected: print("leftA_detected and leftB_detected") interp_left = (1 - alpha) * leftA + alpha * leftB elif leftA_detected: interp_left = leftA # Keep the last known position elif leftB_detected: interp_left = leftB # Use the new position else: interp_left = np.zeros((21, 2)) # No hands detected # Interpolate right hand only if both frames have detected hands if rightA_detected and rightB_detected: print("rightA_detected and rightB_detected") interp_right = (1 - alpha) * rightA + alpha * rightB elif rightA_detected: interp_right = rightA # Keep the last known position elif rightB_detected: interp_right = rightB # Use the new position else: interp_right = np.zeros((21, 2)) # No hands detected frames.append((interp_pose, interp_left, interp_right)) return frames def get_video_writer(output_path, fps=30.0, width=1280, height=720): """ Create a video writer with H.264 codec for better browser compatibility. Falls back to other codecs if H.264 is not available. """ # Try H.264 codec first (best for browser compatibility) try: fourcc = cv2.VideoWriter_fourcc(*'avc1') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if out.isOpened(): print("Using H.264 (avc1) codec for video encoding") return out else: out.release() except Exception as e: print(f"H.264 codec not available: {e}") # Fallback to MPEG-4 try: fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if out.isOpened(): print("Using MPEG-4 (mp4v) codec for video encoding") return out else: out.release() except Exception as e: print(f"MPEG-4 codec not available: {e}") # Final fallback to XVID try: fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if out.isOpened(): print("Using XVID codec for video encoding") return out else: out.release() except Exception as e: print(f"XVID codec not available: {e}") raise RuntimeError("No suitable video codec found") def create_stitched_video(videoA_path, videoB_path, output_path="stitched_output.mp4"): # Extract keypoints from both videos videoA_keypoints = extract_keypoints_from_video(videoA_path) videoB_keypoints = extract_keypoints_from_video(videoB_path) # Create video writer with H.264 codec for better browser compatibility out = get_video_writer(output_path, 30.0, 1280, 720) # Show original A for pose, l, r in videoA_keypoints: frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255 out.write(render_person(frame, pose, l, r)) # Interpolation interp = interpolate_keypoints(videoA_keypoints[-1], videoB_keypoints[0], steps=15) for pose, l, r in interp: frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255 out.write(render_person(frame, pose, l, r)) # Show original B for pose, l, r in videoB_keypoints: frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255 out.write(render_person(frame, pose, l, r)) out.release() print(f"Video saved to {output_path}") def create_multi_stitched_video(video_paths, output_path="multi_stitched_output.mp4", transition_steps=15): """ Create a stitched video from multiple video files. Args: video_paths (list): List of paths to MP4 video files output_path (str): Output path for the final video transition_steps (int): Number of frames for transitions between videos """ if len(video_paths) < 2: print("Need at least 2 videos to stitch together!") return print(f"Processing {len(video_paths)} videos...") # Extract keypoints from all videos all_keypoints = [] for i, video_path in enumerate(video_paths): print(f"Extracting keypoints from video {i+1}/{len(video_paths)}: {video_path}") keypoints = extract_keypoints_from_video(video_path) all_keypoints.append(keypoints) print(f" - Extracted {len(keypoints)} frames") # Create video writer with H.264 codec for better browser compatibility out = get_video_writer(output_path, 30.0, 1280, 720) total_frames = 0 # Process each video for i, keypoints in enumerate(all_keypoints): print(f"Rendering video {i+1}/{len(all_keypoints)}...") # Render all frames from current video for pose, l, r in keypoints: frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255 out.write(render_person(frame, pose, l, r)) total_frames += 1 # Add transition to next video (except for the last video) if i < len(all_keypoints) - 1: print(f" Adding transition to next video...") next_keypoints = all_keypoints[i + 1] # Interpolate between last frame of current video and first frame of next video interp = interpolate_keypoints(keypoints[-1], next_keypoints[0], steps=transition_steps) for pose, l, r in interp: frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255 out.write(render_person(frame, pose, l, r)) total_frames += 1 out.release() print(f"Multi-stitched video saved to {output_path}") print(f"Total frames rendered: {total_frames}") print(f"Video duration: {total_frames/30:.2f} seconds") if __name__ == "__main__": # Example usage for multiple videos video_list = [ "/Users/ethantam/desktop/35304.mp4", "/Users/ethantam/desktop/23978.mp4", "/Users/ethantam/desktop/23106.mp4", # Add more video paths here as needed ] # Create multi-stitched video create_multi_stitched_video(video_list, "multi_stitched_output_1.mp4") # Or use the original 2-video function # create_stitched_video("/Users/ethantam/desktop/35304.mp4", "/Users/ethantam/desktop/23978.mp4")