File size: 26,255 Bytes
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbca390
 
 
 
 
1306721
 
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306721
 
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import cv2
import mediapipe as mp
import numpy as np

def extract_keypoints_from_video(video_path, verbose=False):
    mp_pose = mp.solutions.pose
    mp_hands = mp.solutions.hands

    pose_model = mp_pose.Pose()
    hands_model = mp_hands.Hands(static_image_mode=False, max_num_hands=2)

    cap = cv2.VideoCapture(video_path)
    keypoints_sequence = []

    frame_idx = 0

    while cap.isOpened():
        success, frame = cap.read()
        if not success:
            break

        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        h, w, _ = frame.shape

        # Pose estimation
        pose_results = pose_model.process(frame_rgb)
        if not pose_results.pose_landmarks:
            frame_idx += 1
            continue

        # Extract 33 body keypoints
        pose_landmarks = pose_results.pose_landmarks.landmark
        pose = np.array([[lm.x, lm.y] for lm in pose_landmarks])  # shape (33, 2)

        # Hand tracking
        left_hand = np.zeros((21, 2))
        right_hand = np.zeros((21, 2))

        hand_results = hands_model.process(frame_rgb)
        if hand_results.multi_hand_landmarks and hand_results.multi_handedness:
            for hand_landmarks, hand_info in zip(hand_results.multi_hand_landmarks, hand_results.multi_handedness):
                label = hand_info.classification[0].label  # 'Left' or 'Right'
                hand_array = np.array([[lm.x, lm.y] for lm in hand_landmarks.landmark])
                if label == "Left":
                    left_hand = hand_array
                else:
                    right_hand = hand_array

        keypoints_sequence.append((pose, left_hand, right_hand))

        if verbose:
            print(f"Processed frame {frame_idx}")
        frame_idx += 1

    cap.release()
    pose_model.close()
    hands_model.close()

    return keypoints_sequence

def render_person(frame, pose, left_hand, right_hand):
    h, w = frame.shape[:2]
    
    # Define MediaPipe Pose keypoint indices
    # Face
    NOSE = 0
    LEFT_EYE = 2
    RIGHT_EYE = 5
    LEFT_EAR = 7
    RIGHT_EAR = 8
    
    # Body
    LEFT_SHOULDER = 11
    RIGHT_SHOULDER = 12
    LEFT_ELBOW = 13
    RIGHT_ELBOW = 14
    LEFT_WRIST = 15
    RIGHT_WRIST = 16
    LEFT_HIP = 23
    RIGHT_HIP = 24
    LEFT_KNEE = 25
    RIGHT_KNEE = 26
    LEFT_ANKLE = 27
    RIGHT_ANKLE = 28
    
    # Define hand keypoint indices for MediaPipe Hands
    # Thumb: 0-4, Index: 5-8, Middle: 9-12, Ring: 13-16, Pinky: 17-20
    THUMB_TIP = 4
    INDEX_TIP = 8
    MIDDLE_TIP = 12
    RING_TIP = 16
    PINKY_TIP = 20
    
    # Define finger connections
    finger_connections = [
        # Thumb
        (0, 1), (1, 2), (2, 3), (3, 4),
        # Index finger
        (0, 5), (5, 6), (6, 7), (7, 8),
        # Middle finger
        (0, 9), (9, 10), (10, 11), (11, 12),
        # Ring finger
        (0, 13), (13, 14), (14, 15), (15, 16),
        # Pinky
        (0, 17), (17, 18), (18, 19), (19, 20)
    ]
    
    # Enhanced friendly color palette
    skin_color = (173, 216, 230)  # Light brown bear skin
    outline_color = (40, 40, 40)  # Softer outline
    shirt_color = (205, 170, 125) # Light blue tuxedo jacket

    # shirt_color = (205, 170, 125)
    # skin_color = (173, 216, 230)


    pants_color = (135, 206, 235) # Slightly darker light blue tuxedo pants
    bow_tie_color = (255, 255, 255)  # White bow tie
    eye_color = (255, 255, 255)   # White eyes
    pupil_color = (0, 0, 0)       # Black pupils
    
    # Draw body parts as filled shapes
    
    # 1. Head (face) with enhanced friendly styling
    if len(pose) > max(LEFT_EYE, RIGHT_EYE, LEFT_EAR, RIGHT_EAR):
        # Calculate head center and size
        head_center_x = pose[NOSE][0] * w
        head_center_y = pose[NOSE][1] * h
        
        # Estimate head size based on face keypoints
        if pose[LEFT_EYE][0] > 0 and pose[RIGHT_EYE][0] > 0:
            eye_distance = abs(pose[LEFT_EYE][0] - pose[RIGHT_EYE][0]) * w
            head_radius = eye_distance * 1.8  # Larger head for friendlier look
        else:
            head_radius = 35
        
        # Draw bear ears first (behind the head)
        ear_radius = int(head_radius * 0.4)
        # Left ear
        left_ear_x = int(head_center_x - head_radius * 0.6)
        left_ear_y = int(head_center_y - head_radius * 0.8)
        cv2.circle(frame, (left_ear_x, left_ear_y), ear_radius, skin_color, -1)
        cv2.circle(frame, (left_ear_x, left_ear_y), ear_radius, outline_color, 2)
        # Inner ear detail
        cv2.circle(frame, (left_ear_x, left_ear_y), int(ear_radius * 0.6), (120, 160, 180), -1)
        
        # Right ear
        right_ear_x = int(head_center_x + head_radius * 0.6)
        right_ear_y = int(head_center_y - head_radius * 0.8)
        cv2.circle(frame, (right_ear_x, right_ear_y), ear_radius, skin_color, -1)
        cv2.circle(frame, (right_ear_x, right_ear_y), ear_radius, outline_color, 2)
        # Inner ear detail
        cv2.circle(frame, (right_ear_x, right_ear_y), int(ear_radius * 0.6), (120, 160, 180), -1)
        
        # Draw head with skin color
        cv2.circle(frame, (int(head_center_x), int(head_center_y)), int(head_radius), skin_color, -1)
        cv2.circle(frame, (int(head_center_x), int(head_center_y)), int(head_radius), outline_color, 2)
        
        # Draw larger, cuter bear eyes
        if pose[LEFT_EYE][0] > 0 and pose[LEFT_EYE][1] > 0:
            eye_x, eye_y = int(pose[LEFT_EYE][0] * w), int(pose[LEFT_EYE][1] * h)
            # Larger white eye
            cv2.circle(frame, (eye_x, eye_y), 10, eye_color, -1)
            # Larger pupil
            cv2.circle(frame, (eye_x, eye_y), 6, pupil_color, -1)
            # Eye outline
            cv2.circle(frame, (eye_x, eye_y), 10, outline_color, 1)
            # Eye shine
            cv2.circle(frame, (eye_x-3, eye_y-3), 3, (255, 255, 255), -1)
            
        if pose[RIGHT_EYE][0] > 0 and pose[RIGHT_EYE][1] > 0:
            eye_x, eye_y = int(pose[RIGHT_EYE][0] * w), int(pose[RIGHT_EYE][1] * h)
            # Larger white eye
            cv2.circle(frame, (eye_x, eye_y), 10, eye_color, -1)
            # Larger pupil
            cv2.circle(frame, (eye_x, eye_y), 6, pupil_color, -1)
            # Eye outline
            cv2.circle(frame, (eye_x, eye_y), 10, outline_color, 1)
            # Eye shine
            cv2.circle(frame, (eye_x-3, eye_y-3), 3, (255, 255, 255), -1)
        
        # Draw cute bear nose
        nose_x = int(head_center_x)
        nose_y = int(head_center_y + head_radius * 0.1)
        # Draw a cute round nose
        cv2.circle(frame, (nose_x, nose_y), 6, (80, 40, 20), -1)  # Dark brown nose
        cv2.circle(frame, (nose_x, nose_y), 6, outline_color, 1)
        
        # Draw friendly smile
        smile_center_x = int(head_center_x)
        smile_center_y = int(head_center_y + head_radius * 0.3)
        smile_radius = int(head_radius * 0.6)
        # Draw smile arc
        cv2.ellipse(frame, (smile_center_x, smile_center_y), (smile_radius, smile_radius//2), 
                   0, 0, 180, outline_color, 3)
    
    # 2. Torso with nice shirt
    if len(pose) > max(LEFT_SHOULDER, RIGHT_SHOULDER, LEFT_HIP, RIGHT_HIP):
        # Calculate torso points
        left_shoulder = (int(pose[LEFT_SHOULDER][0] * w), int(pose[LEFT_SHOULDER][1] * h))
        right_shoulder = (int(pose[RIGHT_SHOULDER][0] * w), int(pose[RIGHT_SHOULDER][1] * h))
        left_hip = (int(pose[LEFT_HIP][0] * w), int(pose[LEFT_HIP][1] * h))
        right_hip = (int(pose[RIGHT_HIP][0] * w), int(pose[RIGHT_HIP][1] * h))
        
        # Draw torso as a filled polygon with nice shirt color
        torso_points = np.array([left_shoulder, right_shoulder, right_hip, left_hip], np.int32)
        cv2.fillPoly(frame, [torso_points], shirt_color)
        cv2.polylines(frame, [torso_points], True, outline_color, 2)
    
    # 3. Arms with better proportions (non-stick)
    # Left arm
    if len(pose) > max(LEFT_SHOULDER, LEFT_ELBOW, LEFT_WRIST):
        if pose[LEFT_SHOULDER][0] > 0 and pose[LEFT_ELBOW][0] > 0:
            # Upper arm - 3x thicker and more natural
            cv2.line(frame, 
                     (int(pose[LEFT_SHOULDER][0] * w), int(pose[LEFT_SHOULDER][1] * h)),
                     (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)),
                     skin_color, 36)
            cv2.line(frame, 
                     (int(pose[LEFT_SHOULDER][0] * w), int(pose[LEFT_SHOULDER][1] * h)),
                     (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)),
                     outline_color, 2)
            
            # Lower arm
            if pose[LEFT_WRIST][0] > 0:
                cv2.line(frame, 
                         (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)),
                         (int(pose[LEFT_WRIST][0] * w), int(pose[LEFT_WRIST][1] * h)),
                         skin_color, 30)
                cv2.line(frame, 
                         (int(pose[LEFT_ELBOW][0] * w), int(pose[LEFT_ELBOW][1] * h)),
                         (int(pose[LEFT_WRIST][0] * w), int(pose[LEFT_WRIST][1] * h)),
                         outline_color, 2)
    
    # Right arm
    if len(pose) > max(RIGHT_SHOULDER, RIGHT_ELBOW, RIGHT_WRIST):
        if pose[RIGHT_SHOULDER][0] > 0 and pose[RIGHT_ELBOW][0] > 0:
            # Upper arm - 3x thicker and more natural
            cv2.line(frame, 
                     (int(pose[RIGHT_SHOULDER][0] * w), int(pose[RIGHT_SHOULDER][1] * h)),
                     (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)),
                     skin_color, 36)
            cv2.line(frame, 
                     (int(pose[RIGHT_SHOULDER][0] * w), int(pose[RIGHT_SHOULDER][1] * h)),
                     (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)),
                     outline_color, 2)
            
            # Lower arm
            if pose[RIGHT_WRIST][0] > 0:
                cv2.line(frame, 
                         (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)),
                         (int(pose[RIGHT_WRIST][0] * w), int(pose[RIGHT_WRIST][1] * h)),
                         skin_color, 30)
                cv2.line(frame, 
                         (int(pose[RIGHT_ELBOW][0] * w), int(pose[RIGHT_ELBOW][1] * h)),
                         (int(pose[RIGHT_WRIST][0] * w), int(pose[RIGHT_WRIST][1] * h)),
                         outline_color, 2)
    
    # 4. Legs with nice pants
    # Left leg
    if len(pose) > max(LEFT_HIP, LEFT_KNEE, LEFT_ANKLE):
        if pose[LEFT_HIP][0] > 0 and pose[LEFT_KNEE][0] > 0:
            # Upper leg
            cv2.line(frame, 
                     (int(pose[LEFT_HIP][0] * w), int(pose[LEFT_HIP][1] * h)),
                     (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)),
                     pants_color, 14)
            cv2.line(frame, 
                     (int(pose[LEFT_HIP][0] * w), int(pose[LEFT_HIP][1] * h)),
                     (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)),
                     outline_color, 2)
            
            # Lower leg
            if pose[LEFT_ANKLE][0] > 0:
                cv2.line(frame, 
                         (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)),
                         (int(pose[LEFT_ANKLE][0] * w), int(pose[LEFT_ANKLE][1] * h)),
                         pants_color, 12)
                cv2.line(frame, 
                         (int(pose[LEFT_KNEE][0] * w), int(pose[LEFT_KNEE][1] * h)),
                         (int(pose[LEFT_ANKLE][0] * w), int(pose[LEFT_ANKLE][1] * h)),
                         outline_color, 2)
    
    # Right leg
    if len(pose) > max(RIGHT_HIP, RIGHT_KNEE, RIGHT_ANKLE):
        if pose[RIGHT_HIP][0] > 0 and pose[RIGHT_KNEE][0] > 0:
            # Upper leg
            cv2.line(frame, 
                     (int(pose[RIGHT_HIP][0] * w), int(pose[RIGHT_HIP][1] * h)),
                     (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)),
                     pants_color, 14)
            cv2.line(frame, 
                     (int(pose[RIGHT_HIP][0] * w), int(pose[RIGHT_HIP][1] * h)),
                     (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)),
                     outline_color, 2)
            
            # Lower leg
            if pose[RIGHT_ANKLE][0] > 0:
                cv2.line(frame, 
                         (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)),
                         (int(pose[RIGHT_ANKLE][0] * w), int(pose[RIGHT_ANKLE][1] * h)),
                         pants_color, 12)
                cv2.line(frame, 
                         (int(pose[RIGHT_KNEE][0] * w), int(pose[RIGHT_KNEE][1] * h)),
                         (int(pose[RIGHT_ANKLE][0] * w), int(pose[RIGHT_ANKLE][1] * h)),
                         outline_color, 2)
    
    # 1.5. Neck connecting head to shoulders
    if len(pose) > max(LEFT_SHOULDER, RIGHT_SHOULDER):
        if pose[LEFT_SHOULDER][0] > 0 and pose[RIGHT_SHOULDER][0] > 0:
            # Calculate neck position and size
            neck_center_x = (pose[LEFT_SHOULDER][0] + pose[RIGHT_SHOULDER][0]) / 2 * w
            neck_center_y = (pose[LEFT_SHOULDER][1] + pose[RIGHT_SHOULDER][1]) / 2 * h
            
            # Position neck slightly above shoulders
            neck_y = neck_center_y - 15
            
            # Calculate neck width based on shoulder distance
            shoulder_distance = abs(pose[LEFT_SHOULDER][0] - pose[RIGHT_SHOULDER][0]) * w
            neck_width = shoulder_distance * 0.3  # Neck is about 30% of shoulder width
            neck_height = 25
            
            # Draw neck as a filled rectangle with rounded corners effect
            neck_left = int(neck_center_x - neck_width / 2)
            neck_right = int(neck_center_x + neck_width / 2)
            neck_top = int(neck_y - neck_height / 2)
            neck_bottom = int(neck_y + neck_height / 2)
            
            # Draw neck with skin color
            cv2.rectangle(frame, (neck_left, neck_top), (neck_right, neck_bottom), skin_color, -1)
            cv2.rectangle(frame, (neck_left, neck_top), (neck_right, neck_bottom), outline_color, 2)
            
            # Draw bow tie
            bow_center_x = int(neck_center_x)
            bow_center_y = int(neck_y + neck_height / 2 + 5)
            bow_width = 20
            bow_height = 12
            
            # Draw left side of bow tie
            left_bow_points = np.array([
                [bow_center_x - bow_width//2, bow_center_y - bow_height//2],
                [bow_center_x - bow_width//2 - 8, bow_center_y],
                [bow_center_x - bow_width//2, bow_center_y + bow_height//2],
                [bow_center_x - 2, bow_center_y + bow_height//2],
                [bow_center_x - 2, bow_center_y - bow_height//2]
            ], np.int32)
            cv2.fillPoly(frame, [left_bow_points], bow_tie_color)
            cv2.polylines(frame, [left_bow_points], True, outline_color, 1)
            
            # Draw right side of bow tie
            right_bow_points = np.array([
                [bow_center_x + bow_width//2, bow_center_y - bow_height//2],
                [bow_center_x + bow_width//2 + 8, bow_center_y],
                [bow_center_x + bow_width//2, bow_center_y + bow_height//2],
                [bow_center_x + 2, bow_center_y + bow_height//2],
                [bow_center_x + 2, bow_center_y - bow_height//2]
            ], np.int32)
            cv2.fillPoly(frame, [right_bow_points], bow_tie_color)
            cv2.polylines(frame, [right_bow_points], True, outline_color, 1)
            
            # Draw center knot of bow tie
            knot_points = np.array([
                [bow_center_x - 2, bow_center_y - 3],
                [bow_center_x + 2, bow_center_y - 3],
                [bow_center_x + 2, bow_center_y + 3],
                [bow_center_x - 2, bow_center_y + 3]
            ], np.int32)
            cv2.fillPoly(frame, [knot_points], bow_tie_color)
            cv2.polylines(frame, [knot_points], True, outline_color, 1)
    
    # 5. Enhanced Hands with clear finger definition (drawn last to ensure they're always in front)
    for hand, hand_color in [(left_hand, (255, 0, 0)), (right_hand, (0, 0, 255))]:
        if np.any(hand != 0):  # Only draw if hand is detected
            # Draw hand palm as a filled shape
            palm_points = []
            # Use wrist and base of fingers for palm
            palm_indices = [0, 5, 9, 13, 17]  # Wrist and base of each finger
            for idx in palm_indices:
                if idx < len(hand) and hand[idx][0] > 0 and hand[idx][1] > 0:
                    palm_points.append([int(hand[idx][0] * w), int(hand[idx][1] * h)])
            
            if len(palm_points) > 3:
                palm_points = np.array(palm_points, np.int32)
                hull = cv2.convexHull(palm_points)
                cv2.fillPoly(frame, [hull], (255, 182, 193))  # Light pink color for palm
                cv2.polylines(frame, [hull], True, outline_color, 2)
            
            # Draw individual fingers with clear connections
            for connection in finger_connections:
                start_idx, end_idx = connection
                if (start_idx < len(hand) and end_idx < len(hand) and 
                    hand[start_idx][0] > 0 and hand[start_idx][1] > 0 and
                    hand[end_idx][0] > 0 and hand[end_idx][1] > 0):
                    
                    start_point = (int(hand[start_idx][0] * w), int(hand[start_idx][1] * h))
                    end_point = (int(hand[end_idx][0] * w), int(hand[end_idx][1] * h))
                    
                    # Draw finger bone
                    cv2.line(frame, start_point, end_point, (255, 182, 193), 9)  # Light pink color for finger bones
                    cv2.line(frame, start_point, end_point, outline_color, 1)
            
            # Draw finger tips with emphasis
            finger_tips = [THUMB_TIP, INDEX_TIP, MIDDLE_TIP, RING_TIP, PINKY_TIP]
            for tip_idx in finger_tips:
                if tip_idx < len(hand) and hand[tip_idx][0] > 0 and hand[tip_idx][1] > 0:
                    tip_x, tip_y = int(hand[tip_idx][0] * w), int(hand[tip_idx][1] * h)
                    # Draw larger, more visible finger tips
                    cv2.circle(frame, (tip_x, tip_y), 4, (255, 182, 193), -1)  # Light pink color for finger tips
                    cv2.circle(frame, (tip_x, tip_y), 4, outline_color, 2)
                    # Add a small highlight
                    cv2.circle(frame, (tip_x-1, tip_y-1), 1, (255, 255, 255), -1)
            
            # Draw all hand keypoints for clarity (keeping original red/blue colors for dots)
            for i, (x, y) in enumerate(hand):
                if x > 0 and y > 0:
                    point_x, point_y = int(x * w), int(y * h)
                    # Different colors for different parts of the hand
                    if i in finger_tips:
                        cv2.circle(frame, (point_x, point_y), 2, hand_color, -1)
                    else:
                        cv2.circle(frame, (point_x, point_y), 1, hand_color, -1)
    
    return frame

def interpolate_keypoints(kptsA, kptsB, steps):
    poseA, leftA, rightA = kptsA
    poseB, leftB, rightB = kptsB

    frames = []
    for t in range(1, steps + 1):
        alpha = t / (steps + 1)
        interp_pose = (1 - alpha) * poseA + alpha * poseB
        
        # Check if hands are detected (non-zero coordinates)
        leftA_detected = np.any(leftA != 0)
        rightA_detected = np.any(rightA != 0)
        leftB_detected = np.any(leftB != 0)
        rightB_detected = np.any(rightB != 0)
        
        # Interpolate left hand only if both frames have detected hands
        if leftA_detected and leftB_detected:
            print("leftA_detected and leftB_detected")
            interp_left = (1 - alpha) * leftA + alpha * leftB
        elif leftA_detected:
            interp_left = leftA  # Keep the last known position
        elif leftB_detected:
            interp_left = leftB  # Use the new position
        else:
            interp_left = np.zeros((21, 2))  # No hands detected
        
        # Interpolate right hand only if both frames have detected hands
        if rightA_detected and rightB_detected:
            print("rightA_detected and rightB_detected")
            interp_right = (1 - alpha) * rightA + alpha * rightB
        elif rightA_detected:
            interp_right = rightA  # Keep the last known position
        elif rightB_detected:
            interp_right = rightB  # Use the new position
        else:
            interp_right = np.zeros((21, 2))  # No hands detected
        
        frames.append((interp_pose, interp_left, interp_right))
    return frames

def get_video_writer(output_path, fps=30.0, width=1280, height=720):
    """
    Create a video writer with H.264 codec for better browser compatibility.
    Falls back to other codecs if H.264 is not available.
    """
    # Try H.264 codec first (best for browser compatibility)
    try:
        fourcc = cv2.VideoWriter_fourcc(*'avc1')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        if out.isOpened():
            print("Using H.264 (avc1) codec for video encoding")
            return out
        else:
            out.release()
    except Exception as e:
        print(f"H.264 codec not available: {e}")
    
    # Fallback to MPEG-4
    try:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        if out.isOpened():
            print("Using MPEG-4 (mp4v) codec for video encoding")
            return out
        else:
            out.release()
    except Exception as e:
        print(f"MPEG-4 codec not available: {e}")
    
    # Final fallback to XVID
    try:
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        if out.isOpened():
            print("Using XVID codec for video encoding")
            return out
        else:
            out.release()
    except Exception as e:
        print(f"XVID codec not available: {e}")
    
    raise RuntimeError("No suitable video codec found")

def create_stitched_video(videoA_path, videoB_path, output_path="stitched_output.mp4"):
    # Extract keypoints from both videos
    videoA_keypoints = extract_keypoints_from_video(videoA_path)
    videoB_keypoints = extract_keypoints_from_video(videoB_path)
    
    # Create video writer with H.264 codec for better browser compatibility
    out = get_video_writer(output_path, 30.0, 1280, 720)

    # Show original A
    for pose, l, r in videoA_keypoints:
        frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255
        out.write(render_person(frame, pose, l, r))

    # Interpolation
    interp = interpolate_keypoints(videoA_keypoints[-1], videoB_keypoints[0], steps=15)
    for pose, l, r in interp:
        frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255
        out.write(render_person(frame, pose, l, r))

    # Show original B
    for pose, l, r in videoB_keypoints:
        frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255
        out.write(render_person(frame, pose, l, r))

    out.release()
    print(f"Video saved to {output_path}")

def create_multi_stitched_video(video_paths, output_path="multi_stitched_output.mp4", transition_steps=15):
    """
    Create a stitched video from multiple video files.
    
    Args:
        video_paths (list): List of paths to MP4 video files
        output_path (str): Output path for the final video
        transition_steps (int): Number of frames for transitions between videos
    """
    if len(video_paths) < 2:
        print("Need at least 2 videos to stitch together!")
        return
    
    print(f"Processing {len(video_paths)} videos...")
    
    # Extract keypoints from all videos
    all_keypoints = []
    for i, video_path in enumerate(video_paths):
        print(f"Extracting keypoints from video {i+1}/{len(video_paths)}: {video_path}")
        keypoints = extract_keypoints_from_video(video_path)
        all_keypoints.append(keypoints)
        print(f"  - Extracted {len(keypoints)} frames")
    
    # Create video writer with H.264 codec for better browser compatibility
    out = get_video_writer(output_path, 30.0, 1280, 720)
    
    total_frames = 0
    
    # Process each video
    for i, keypoints in enumerate(all_keypoints):
        print(f"Rendering video {i+1}/{len(all_keypoints)}...")
        
        # Render all frames from current video
        for pose, l, r in keypoints:
            frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255
            out.write(render_person(frame, pose, l, r))
            total_frames += 1
        
        # Add transition to next video (except for the last video)
        if i < len(all_keypoints) - 1:
            print(f"  Adding transition to next video...")
            next_keypoints = all_keypoints[i + 1]
            
            # Interpolate between last frame of current video and first frame of next video
            interp = interpolate_keypoints(keypoints[-1], next_keypoints[0], steps=transition_steps)
            for pose, l, r in interp:
                frame = np.ones((720, 1280, 3), dtype=np.uint8) * 255
                out.write(render_person(frame, pose, l, r))
                total_frames += 1
    
    out.release()
    print(f"Multi-stitched video saved to {output_path}")
    print(f"Total frames rendered: {total_frames}")
    print(f"Video duration: {total_frames/30:.2f} seconds")

if __name__ == "__main__":
    # Example usage for multiple videos
    video_list = [
        "/Users/ethantam/desktop/35304.mp4",
        "/Users/ethantam/desktop/23978.mp4",
        "/Users/ethantam/desktop/23106.mp4",
        # Add more video paths here as needed
    ]
    
    # Create multi-stitched video
    create_multi_stitched_video(video_list, "multi_stitched_output_1.mp4")
    
    # Or use the original 2-video function
    # create_stitched_video("/Users/ethantam/desktop/35304.mp4", "/Users/ethantam/desktop/23978.mp4")