#Import necessary libraries import gradio as gr from fastai.vision.all import * import skimage bear_learner = load_learner('export.pkl') #Create function that accepth image path and labels = bear_learner.dls.vocab def predict(img): img = PILImage.create(img) pred, idx, probs = bear_learner.predict(img) return {labels[i]: round(float(probs[i]), 2) for i in range(len(labels))} examples = ["black_bear.jpg", "teddy_bear.jpg"] #interface = gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label()).launch()