import os import requests import gradio as gr import openai from dotenv import load_dotenv # Load environment variables load_dotenv() # Initialize OpenAI client openai.api_key = os.getenv("OPENAI_API_KEY1") # Define function to get current weather def get_current_weather(location, unit='celsius'): weather_api_key = os.getenv("WEATHER_API_KEY") base_url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={weather_api_key}&units=metric" try: response = requests.get(base_url, timeout=10) # Increased timeout for the request response.raise_for_status() # Check if the request was successful data = response.json() weather_description = data['weather'][0]['description'] return { "location": location, "temperature": data['main']['temp'], "weather": weather_description } except requests.exceptions.Timeout: return {"error": "Request timed out. Please try again later."} except requests.exceptions.RequestException as e: print(f"Request failed: {e}") return {"error": str(e)} # Function definition and initial message handling def weather_chat(user_message): messages = [] messages.append({"role": "user", "content": user_message}) messages.append({"role": "assistant", "content": "You are a weather bot. Answer only in Celsius. If two cities are asked, provide weather for both."}) # Sending initial message to OpenAI try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", temperature=0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0, messages=messages, functions=[ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "The city, e.g. San Francisco"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]} }, "required": ["location"] } } ] ) except Exception as e: print(f"OpenAI API call failed: {e}") return "Failed to communicate with the OpenAI API. Please try again later." # Handling function calls and fetching weather data try: function_call = response['choices'][0]['message']['function_call'] arguments = eval(function_call['arguments']) weather_data = get_current_weather(arguments['location']) if 'error' in weather_data: return weather_data['error'] messages.append({"role": "assistant", "content": None, "function_call": {"name": "get_current_weather", "arguments": str(arguments)}}) messages.append({"role": "function", "name": "get_current_weather", "content": str(weather_data)}) # Continue conversation with weather data response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) return response['choices'][0]['message']['content'] except Exception as e: print(f"Error during processing: {e}") return "I'm here to provide weather updates. Please ask me questions related to weather." # Define Gradio interface iface = gr.Interface( fn=weather_chat, inputs=gr.Textbox(label="Weather Queries"), outputs=gr.Textbox(label="Weather Updates"), title="DDS Weather Bot", description="Ask me anything about weather!" ) # Launch the Gradio interface iface.launch(share=True)