from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn from einops import rearrange from audioldm.latent_diffusion.util import checkpoint def exists(val): return val is not None def uniq(arr): return {el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange( qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 ) k = k.softmax(dim=-1) context = torch.einsum("bhdn,bhen->bhde", k, v) out = torch.einsum("bhde,bhdn->bhen", context, q) out = rearrange( out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w ) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = rearrange(q, "b c h w -> b (h w) c") k = rearrange(k, "b c h w -> b c (h w)") w_ = torch.einsum("bij,bjk->bik", q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, "b c h w -> b c (h w)") w_ = rearrange(w_, "b i j -> b j i") h_ = torch.einsum("bij,bjk->bik", v, w_) h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) h_ = self.proj_out(h_) return x + h_ class CrossAttention(nn.Module): """ ### Cross Attention Layer This falls-back to self-attention when conditional embeddings are not specified. """ # use_flash_attention: bool = True use_flash_attention: bool = False def __init__( self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, is_inplace: bool = True, ): # def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True): """ :param d_model: is the input embedding size :param n_heads: is the number of attention heads :param d_head: is the size of a attention head :param d_cond: is the size of the conditional embeddings :param is_inplace: specifies whether to perform the attention softmax computation inplace to save memory """ super().__init__() self.is_inplace = is_inplace self.n_heads = heads self.d_head = dim_head # Attention scaling factor self.scale = dim_head**-0.5 # The normal self-attention layer if context_dim is None: context_dim = query_dim # Query, key and value mappings d_attn = dim_head * heads self.to_q = nn.Linear(query_dim, d_attn, bias=False) self.to_k = nn.Linear(context_dim, d_attn, bias=False) self.to_v = nn.Linear(context_dim, d_attn, bias=False) # Final linear layer self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout)) # Setup [flash attention](https://github.com/HazyResearch/flash-attention). # Flash attention is only used if it's installed # and `CrossAttention.use_flash_attention` is set to `True`. try: # You can install flash attention by cloning their Github repo, # [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention) # and then running `python setup.py install` from flash_attn.flash_attention import FlashAttention self.flash = FlashAttention() # Set the scale for scaled dot-product attention. self.flash.softmax_scale = self.scale # Set to `None` if it's not installed except ImportError: self.flash = None def forward(self, x, context=None, mask=None): """ :param x: are the input embeddings of shape `[batch_size, height * width, d_model]` :param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]` """ # If `cond` is `None` we perform self attention has_cond = context is not None if not has_cond: context = x # Get query, key and value vectors q = self.to_q(x) k = self.to_k(context) v = self.to_v(context) # Use flash attention if it's available and the head size is less than or equal to `128` if ( CrossAttention.use_flash_attention and self.flash is not None and not has_cond and self.d_head <= 128 ): return self.flash_attention(q, k, v) # Otherwise, fallback to normal attention else: return self.normal_attention(q, k, v) def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): """ #### Flash Attention :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` """ # Get batch size and number of elements along sequence axis (`width * height`) batch_size, seq_len, _ = q.shape # Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of # shape `[batch_size, seq_len, 3, n_heads * d_head]` qkv = torch.stack((q, k, v), dim=2) # Split the heads qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head) # Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to # fit this size. if self.d_head <= 32: pad = 32 - self.d_head elif self.d_head <= 64: pad = 64 - self.d_head elif self.d_head <= 128: pad = 128 - self.d_head else: raise ValueError(f"Head size ${self.d_head} too large for Flash Attention") # Pad the heads if pad: qkv = torch.cat( (qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1 ) # Compute attention # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ # This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]` # TODO here I add the dtype changing out, _ = self.flash(qkv.type(torch.float16)) # Truncate the extra head size out = out[:, :, :, : self.d_head].float() # Reshape to `[batch_size, seq_len, n_heads * d_head]` out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head) # Map to `[batch_size, height * width, d_model]` with a linear layer return self.to_out(out) def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): """ #### Normal Attention :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` """ # Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]` q = q.view(*q.shape[:2], self.n_heads, -1) # [bs, 64, 20, 32] k = k.view(*k.shape[:2], self.n_heads, -1) # [bs, 1, 20, 32] v = v.view(*v.shape[:2], self.n_heads, -1) # Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$ attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale # Compute softmax # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$ if self.is_inplace: half = attn.shape[0] // 2 attn[half:] = attn[half:].softmax(dim=-1) attn[:half] = attn[:half].softmax(dim=-1) else: attn = attn.softmax(dim=-1) # Compute attention output # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ # attn: [bs, 20, 64, 1] # v: [bs, 1, 20, 32] out = torch.einsum("bhij,bjhd->bihd", attn, v) # Reshape to `[batch_size, height * width, n_heads * d_head]` out = out.reshape(*out.shape[:2], -1) # Map to `[batch_size, height * width, d_model]` with a linear layer return self.to_out(out) # class CrossAttention(nn.Module): # def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): # super().__init__() # inner_dim = dim_head * heads # context_dim = default(context_dim, query_dim) # self.scale = dim_head ** -0.5 # self.heads = heads # self.to_q = nn.Linear(query_dim, inner_dim, bias=False) # self.to_k = nn.Linear(context_dim, inner_dim, bias=False) # self.to_v = nn.Linear(context_dim, inner_dim, bias=False) # self.to_out = nn.Sequential( # nn.Linear(inner_dim, query_dim), # nn.Dropout(dropout) # ) # def forward(self, x, context=None, mask=None): # h = self.heads # q = self.to_q(x) # context = default(context, x) # k = self.to_k(context) # v = self.to_v(context) # q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # if exists(mask): # mask = rearrange(mask, 'b ... -> b (...)') # max_neg_value = -torch.finfo(sim.dtype).max # mask = repeat(mask, 'b j -> (b h) () j', h=h) # sim.masked_fill_(~mask, max_neg_value) # # attention, what we cannot get enough of # attn = sim.softmax(dim=-1) # out = einsum('b i j, b j d -> b i d', attn, v) # out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # return self.to_out(out) class BasicTransformerBlock(nn.Module): def __init__( self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True, ): super().__init__() self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): if context is None: return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint) else: return checkpoint( self._forward, (x, context), self.parameters(), self.checkpoint ) def _forward(self, x, context=None): x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__( self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None, no_context=False, ): super().__init__() if no_context: context_dim = None self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim ) for d in range(depth) ] ) self.proj_out = zero_module( nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) ) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, "b c h w -> b (h w) c") for block in self.transformer_blocks: x = block(x, context=context) x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) x = self.proj_out(x) return x + x_in