# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, Callable, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils.import_utils import is_xformers_available from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings if is_xformers_available(): import xformers import xformers.ops else: xformers = None class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. Uses three q, k, v linear layers to compute attention. Parameters: channels (`int`): The number of channels in the input and output. num_head_channels (`int`, *optional*): The number of channels in each head. If None, then `num_heads` = 1. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm. rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by. eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. """ # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore def __init__( self, channels: int, num_head_channels: Optional[int] = None, norm_num_groups: int = 32, rescale_output_factor: float = 1.0, eps: float = 1e-5, ): super().__init__() self.channels = channels self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 self.num_head_size = num_head_channels self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True) # define q,k,v as linear layers self.query = nn.Linear(channels, channels) self.key = nn.Linear(channels, channels) self.value = nn.Linear(channels, channels) self.rescale_output_factor = rescale_output_factor self.proj_attn = nn.Linear(channels, channels, bias=True) self._use_memory_efficient_attention_xformers = False self._attention_op = None def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.num_heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.num_heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def set_use_memory_efficient_attention_xformers( self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None ): if use_memory_efficient_attention_xformers: if not is_xformers_available(): raise ModuleNotFoundError( ( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers" ), name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" " only available for GPU " ) else: try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers self._attention_op = attention_op def forward(self, hidden_states): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) scale = 1 / math.sqrt(self.channels / self.num_heads) query_proj = self.reshape_heads_to_batch_dim(query_proj) key_proj = self.reshape_heads_to_batch_dim(key_proj) value_proj = self.reshape_heads_to_batch_dim(value_proj) if self._use_memory_efficient_attention_xformers: # Memory efficient attention hidden_states = xformers.ops.memory_efficient_attention( query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op ) hidden_states = hidden_states.to(query_proj.dtype) else: attention_scores = torch.baddbmm( torch.empty( query_proj.shape[0], query_proj.shape[1], key_proj.shape[1], dtype=query_proj.dtype, device=query_proj.device, ), query_proj, key_proj.transpose(-1, -2), beta=0, alpha=scale, ) attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) hidden_states = torch.bmm(attention_probs, value_proj) # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) # compute next hidden_states hidden_states = self.proj_attn(hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", final_dropout: bool = False, ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # 1. Self-Attn self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, ) self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) # is self-attn if encoder_hidden_states is none else: self.attn2 = None if self.use_ada_layer_norm: self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) elif self.use_ada_layer_norm_zero: self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) else: self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. self.norm2 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) ) else: self.norm2 = None # 3. Feed-forward self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, ): if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) else: norm_hidden_states = self.norm1(hidden_states) # 1. Self-Attention cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # 2. Cross-Attention attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) # print (f"attn output {attn_output.shape}, hidden states {hidden_states.shape}") hidden_states = attn_output + hidden_states # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, ): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh") elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states): for module in self.net: hidden_states = module(hidden_states) return hidden_states class GELU(nn.Module): r""" GELU activation function with tanh approximation support with `approximate="tanh"`. """ def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): super().__init__() self.proj = nn.Linear(dim_in, dim_out) self.approximate = approximate def gelu(self, gate): if gate.device.type != "mps": return F.gelu(gate, approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states = self.gelu(hidden_states) return hidden_states class GEGLU(nn.Module): r""" A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def gelu(self, gate): if gate.device.type != "mps": return F.gelu(gate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) def forward(self, hidden_states): hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) return hidden_states * self.gelu(gate) class ApproximateGELU(nn.Module): """ The approximate form of Gaussian Error Linear Unit (GELU) For more details, see section 2: https://arxiv.org/abs/1606.08415 """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out) def forward(self, x): x = self.proj(x) return x * torch.sigmoid(1.702 * x) class AdaLayerNorm(nn.Module): """ Norm layer modified to incorporate timestep embeddings. """ def __init__(self, embedding_dim, num_embeddings): super().__init__() self.emb = nn.Embedding(num_embeddings, embedding_dim) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, embedding_dim * 2) self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) def forward(self, x, timestep): emb = self.linear(self.silu(self.emb(timestep))) scale, shift = torch.chunk(emb, 2) x = self.norm(x) * (1 + scale) + shift return x class AdaLayerNormZero(nn.Module): """ Norm layer adaptive layer norm zero (adaLN-Zero). """ def __init__(self, embedding_dim, num_embeddings): super().__init__() self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) def forward(self, x, timestep, class_labels, hidden_dtype=None): emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class AdaGroupNorm(nn.Module): """ GroupNorm layer modified to incorporate timestep embeddings. """ def __init__( self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 ): super().__init__() self.num_groups = num_groups self.eps = eps self.act = None if act_fn == "swish": self.act = lambda x: F.silu(x) elif act_fn == "mish": self.act = nn.Mish() elif act_fn == "silu": self.act = nn.SiLU() elif act_fn == "gelu": self.act = nn.GELU() self.linear = nn.Linear(embedding_dim, out_dim * 2) def forward(self, x, emb): if self.act: emb = self.act(emb) emb = self.linear(emb) emb = emb[:, :, None, None] scale, shift = emb.chunk(2, dim=1) x = F.group_norm(x, self.num_groups, eps=self.eps) x = x * (1 + scale) + shift return x