import numpy as np import pandas as pd import seaborn as sns import joblib import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import classification_report from sklearn.metrics import mean_squared_error from sklearn.preprocessing import OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.pipeline import make_pipeline from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.compose import ColumnTransformer from sklearn.metrics import mean_squared_error, r2_score data = pd.read_csv("/Users/debjanighosh/insurance.csv") target = 'charges' numerical_features = ['age', 'bmi','children'] categorical_features = ['sex','smoker','region'] print("Creating data subsets") X = data[numerical_features + categorical_features] y = data[target] Xtrain, Xtest, ytrain, ytest = train_test_split( X,y, test_size=0.2, random_state=42 ) numerical_pipeline = Pipeline([ ('imputer',SimpleImputer(strategy='median')), ('scaler',StandardScaler()) ]) categorical_pipeline = Pipeline([ ('imputer',SimpleImputer(strategy='most_frequent')), ('onehot',OneHotEncoder(handle_unknown='ignore')) ]) preprocessor = make_column_transformer( (numerical_pipeline, numerical_features), (categorical_pipeline, categorical_features) ) model_linear_regression = LinearRegression() print ("Estimating Best Model Pipeline") model_pipeline = make_pipeline( preprocessor, model_linear_regression ) model_pipeline.fit(Xtrain, ytrain) print("Logging Metrics") print(f"R2 Score:{r2_score(ytest, model_pipeline.predict(Xtest))}") print("Serializing Model") saved_model_path = "model.joblib" joblib.dump(model_pipeline, saved_model_path)