# Copyright 2023 The Orbit Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides a utility class for training in epochs.""" import tensorflow as tf, tf_keras class EpochHelper: """A helper class handle bookkeeping of epochs in custom training loops.""" def __init__(self, epoch_steps: int, global_step: tf.Variable): """Initializes the `EpochHelper` instance. Args: epoch_steps: An integer indicating how many steps are in an epoch. global_step: A `tf.Variable` providing the current global step. """ self._epoch_steps = epoch_steps self._global_step = global_step self._current_epoch = None self._epoch_start_step = None self._in_epoch = False def epoch_begin(self): """Returns whether a new epoch should begin.""" if self._in_epoch: return False current_step = self._global_step.numpy() self._epoch_start_step = current_step self._current_epoch = current_step // self._epoch_steps self._in_epoch = True return True def epoch_end(self): """Returns whether the current epoch should end.""" if not self._in_epoch: raise ValueError("`epoch_end` can only be called inside an epoch.") current_step = self._global_step.numpy() epoch = current_step // self._epoch_steps if epoch > self._current_epoch: self._in_epoch = False return True return False @property def batch_index(self): """Index of the next batch within the current epoch.""" return self._global_step.numpy() - self._epoch_start_step @property def current_epoch(self): return self._current_epoch