# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow Model Garden Vision training driver.""" from absl import app from absl import flags from absl import logging import gin import tensorflow as tf, tf_keras from official.common import distribute_utils from official.common import flags as tfm_flags from official.core import task_factory from official.core import train_lib from official.core import train_utils from official.modeling import performance from official.vision import registry_imports # pylint: disable=unused-import from official.vision.utils import summary_manager FLAGS = flags.FLAGS flags.DEFINE_bool( 'enable_async_checkpointing', default=True, help='A boolean indicating whether to enable async checkpoint saving') def _run_experiment_with_preemption_recovery(params, model_dir): """Runs experiment and tries to reconnect when encounting a preemption.""" keep_training = True while keep_training: preemption_watcher = None try: distribution_strategy = distribute_utils.get_distribution_strategy( distribution_strategy=params.runtime.distribution_strategy, all_reduce_alg=params.runtime.all_reduce_alg, num_gpus=params.runtime.num_gpus, tpu_address=params.runtime.tpu) with distribution_strategy.scope(): task = task_factory.get_task(params.task, logging_dir=model_dir) # pylint: disable=line-too-long preemption_watcher = None # copybara-replace # pylint: enable=line-too-long train_lib.run_experiment( distribution_strategy=distribution_strategy, task=task, mode=FLAGS.mode, params=params, model_dir=model_dir, summary_manager=None, eval_summary_manager=summary_manager.maybe_build_eval_summary_manager( params=params, model_dir=model_dir ), enable_async_checkpointing=FLAGS.enable_async_checkpointing, ) keep_training = False except tf.errors.OpError as e: if preemption_watcher and preemption_watcher.preemption_message: preemption_watcher.block_until_worker_exit() logging.info( 'Some TPU workers had been preempted (message: %s), ' 'retarting training from the last checkpoint...', preemption_watcher.preemption_message) keep_training = True else: raise e from None def main(_): gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params) params = train_utils.parse_configuration(FLAGS) model_dir = FLAGS.model_dir if 'train' in FLAGS.mode: # Pure eval modes do not output yaml files. Otherwise continuous eval job # may race against the train job for writing the same file. train_utils.serialize_config(params, model_dir) # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16' # can have significant impact on model speeds by utilizing float16 in case of # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when # dtype is float16 if params.runtime.mixed_precision_dtype: performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype) _run_experiment_with_preemption_recovery(params, model_dir) train_utils.save_gin_config(FLAGS.mode, model_dir) if __name__ == '__main__': tfm_flags.define_flags() flags.mark_flags_as_required(['experiment', 'mode', 'model_dir']) app.run(main)