# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for NAS-FPN.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import resnet from official.vision.modeling.decoders import nasfpn class NASFPNTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (256, 3, 7, False), (256, 3, 7, True), ) def test_network_creation(self, input_size, min_level, max_level, use_separable_conv): """Test creation of NAS-FPN.""" tf_keras.backend.set_image_data_format('channels_last') inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) num_filters = 256 backbone = resnet.ResNet(model_id=50) network = nasfpn.NASFPN( input_specs=backbone.output_specs, min_level=min_level, max_level=max_level, num_filters=num_filters, use_separable_conv=use_separable_conv) endpoints = backbone(inputs) feats = network(endpoints) for level in range(min_level, max_level + 1): self.assertIn(str(level), feats) self.assertAllEqual( [1, input_size // 2**level, input_size // 2**level, num_filters], feats[str(level)].shape.as_list()) if __name__ == '__main__': tf.test.main()