# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for segmentation_losses.""" from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.losses import segmentation_losses class SegmentationLossTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (True, False, 1.), (True, True, 0.5), (False, True, 1.), ) def testSegmentationLoss(self, use_groundtruth_dimension, use_binary_cross_entropy, top_k_percent_pixels): # [batch, height, width, num_layers]: [2, 3, 4, 1] labels = tf.random.uniform([2, 3, 4, 1], minval=0, maxval=6, dtype=tf.int32) # [batch, height, width, num_classes]: [2, 3, 4, 6] logits = tf.random.uniform([2, 3, 4, 6], minval=-1, maxval=1, dtype=tf.float32) loss = segmentation_losses.SegmentationLoss( label_smoothing=0., class_weights=[], ignore_label=255, use_groundtruth_dimension=use_groundtruth_dimension, use_binary_cross_entropy=use_binary_cross_entropy, top_k_percent_pixels=top_k_percent_pixels)(logits, labels) self.assertEqual(tf.rank(loss), 0) def testSegmentationLossTopK(self): labels = tf.constant([[[[0], [0]], [[0], [2]]]]) logits = tf.constant([[[[100., 0., 0.], [100., 0, 0.]], [[100., 0., 0.], [0., 1., 0.]]]]) loss = segmentation_losses.SegmentationLoss( label_smoothing=0., class_weights=[], ignore_label=255, use_groundtruth_dimension=True, top_k_percent_pixels=0.5)(logits, labels) self.assertAllClose(loss, 0.775718, atol=1e-4) def testSegmentationLossTopKWithIgnoreLabel(self): labels = tf.constant([[[[0], [0]], [[0], [2]]]]) logits = tf.constant([[[[100., 0., 0.], [100., 0, 0.]], [[100., 0., 0.], [0., 1., 0.]]]]) loss = segmentation_losses.SegmentationLoss( label_smoothing=0., class_weights=[], ignore_label=0, use_groundtruth_dimension=True, top_k_percent_pixels=0.5)(logits, labels) self.assertAllClose(loss, 1.551429, atol=1e-4) def testSegmentationLossGroundTruthIsMattingMap(self): # [batch, height, width, num_layers]: [2, 3, 4, 1] labels = tf.random.uniform([2, 3, 4, 1], minval=0, maxval=1, dtype=tf.float32) # [batch, height, width, num_classes]: [2, 3, 4, 2] logits = tf.random.uniform([2, 3, 4, 2], minval=-1, maxval=1, dtype=tf.float32) loss = segmentation_losses.SegmentationLoss( label_smoothing=0., class_weights=[], ignore_label=255, use_groundtruth_dimension=True, use_binary_cross_entropy=False, top_k_percent_pixels=1.)(logits, labels) self.assertEqual(tf.rank(loss), 0) if __name__ == '__main__': tf.test.main()