# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimizer from addons and learning rate scheduler.""" import tensorflow as tf, tf_keras class LearningRateSchedule(tf_keras.optimizers.schedules.LearningRateSchedule): """Learning rate schedule.""" def __init__(self, initial_learning_rate, hidden_size, warmup_steps): """Initialize configuration of the learning rate schedule. Args: initial_learning_rate: A float, the initial learning rate. hidden_size: An integer, the model dimension in the hidden layers. warmup_steps: An integer, the number of steps required for linear warmup. """ super(LearningRateSchedule, self).__init__() self.initial_learning_rate = initial_learning_rate self.hidden_size = hidden_size self.warmup_steps = warmup_steps self.warmup_steps_tensor = tf.cast(warmup_steps, tf.float32) def __call__(self, global_step): """Calculate learning rate with linear warmup and rsqrt decay. Args: global_step: An integer, the current global step used for learning rate calculation. Returns: A float, the learning rate needs to be used for current global step. """ with tf.name_scope('learning_rate_schedule'): global_step = tf.cast(global_step, tf.float32) learning_rate = self.initial_learning_rate learning_rate *= (self.hidden_size**-0.5) # Apply linear warmup learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps_tensor) # Apply rsqrt decay learning_rate /= tf.sqrt( tf.maximum(global_step, self.warmup_steps_tensor)) return learning_rate def get_config(self): """Get the configuration of the learning rate schedule.""" return { 'initial_learning_rate': self.initial_learning_rate, 'hidden_size': self.hidden_size, 'warmup_steps': self.warmup_steps, }