# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for segmentation_heads.py.""" # Import libraries from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.vision.modeling.heads import segmentation_heads class SegmentationHeadTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (2, 'pyramid_fusion', None, None), (3, 'pyramid_fusion', None, None), (2, 'panoptic_fpn_fusion', 2, 5), (2, 'panoptic_fpn_fusion', 2, 6), (3, 'panoptic_fpn_fusion', 3, 5), (3, 'panoptic_fpn_fusion', 3, 6), (3, 'deeplabv3plus', 3, 6), (3, 'deeplabv3plus_sum_to_merge', 3, 6)) def test_forward(self, level, feature_fusion, decoder_min_level, decoder_max_level): backbone_features = { '3': np.random.rand(2, 128, 128, 16), '4': np.random.rand(2, 64, 64, 16), '5': np.random.rand(2, 32, 32, 16), } decoder_features = { '3': np.random.rand(2, 128, 128, 64), '4': np.random.rand(2, 64, 64, 64), '5': np.random.rand(2, 32, 32, 64), '6': np.random.rand(2, 16, 16, 64), } if feature_fusion == 'panoptic_fpn_fusion': backbone_features['2'] = np.random.rand(2, 256, 256, 16) decoder_features['2'] = np.random.rand(2, 256, 256, 64) head = segmentation_heads.SegmentationHead( num_classes=10, level=level, low_level=decoder_min_level, low_level_num_filters=64, feature_fusion=feature_fusion, decoder_min_level=decoder_min_level, decoder_max_level=decoder_max_level, num_decoder_filters=64) logits = head((backbone_features, decoder_features)) if str(level) in decoder_features: self.assertAllEqual(logits.numpy().shape, [ 2, decoder_features[str(level)].shape[1], decoder_features[str(level)].shape[2], 10 ]) def test_serialize_deserialize(self): head = segmentation_heads.SegmentationHead(num_classes=10, level=3) config = head.get_config() new_head = segmentation_heads.SegmentationHead.from_config(config) self.assertAllEqual(head.get_config(), new_head.get_config()) class MaskScoringHeadTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (1, 1, 64, [4, 4]), (2, 1, 64, [4, 4]), (3, 1, 64, [4, 4]), (1, 2, 32, [8, 8]), (2, 2, 32, [8, 8]), (3, 2, 32, [8, 8]),) def test_forward(self, num_convs, num_fcs, num_filters, fc_input_size): features = np.random.rand(2, 64, 64, 16) head = segmentation_heads.MaskScoring( num_classes=2, num_convs=num_convs, num_filters=num_filters, fc_dims=128, num_fcs=num_fcs, fc_input_size=fc_input_size) scores = head(features) self.assertAllEqual(scores.numpy().shape, [2, 2]) def test_serialize_deserialize(self): head = segmentation_heads.MaskScoring( num_classes=2, fc_input_size=[4, 4], fc_dims=128) config = head.get_config() new_head = segmentation_heads.MaskScoring.from_config(config) self.assertAllEqual(head.get_config(), new_head.get_config()) if __name__ == '__main__': tf.test.main()