# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SpineNet.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import spinenet_mobile class SpineNetMobileTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (128, 0.6, 1, 0.0, 24), (128, 0.65, 1, 0.2, 40), (256, 1.0, 1, 0.2, 48), ) def test_network_creation(self, input_size, filter_size_scale, block_repeats, se_ratio, endpoints_num_filters): """Test creation of SpineNet models.""" min_level = 3 max_level = 7 tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec( shape=[None, input_size, input_size, 3]) model = spinenet_mobile.SpineNetMobile( input_specs=input_specs, min_level=min_level, max_level=max_level, endpoints_num_filters=endpoints_num_filters, resample_alpha=se_ratio, block_repeats=block_repeats, filter_size_scale=filter_size_scale, init_stochastic_depth_rate=0.2, ) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = model(inputs) for l in range(min_level, max_level + 1): self.assertIn(str(l), endpoints.keys()) self.assertAllEqual( [1, input_size / 2**l, input_size / 2**l, endpoints_num_filters], endpoints[str(l)].shape.as_list()) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( min_level=3, max_level=7, endpoints_num_filters=256, se_ratio=0.2, expand_ratio=6, block_repeats=1, filter_size_scale=1.0, init_stochastic_depth_rate=0.2, use_sync_bn=False, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, use_keras_upsampling_2d=False, ) network = spinenet_mobile.SpineNetMobile(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = spinenet_mobile.SpineNetMobile.from_config( network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()