# --experiment_type=retinanet_mobile_coco # COCO AP 23.5% runtime: distribution_strategy: 'tpu' mixed_precision_dtype: 'bfloat16' task: losses: l2_weight_decay: 3.0e-05 model: anchor: anchor_size: 3 aspect_ratios: [0.5, 1.0, 2.0] num_scales: 3 backbone: mobilenet: model_id: 'MobileNetV2' filter_size_scale: 1.0 type: 'mobilenet' decoder: type: 'fpn' fpn: num_filters: 128 use_separable_conv: true use_keras_layer: true head: num_convs: 4 num_filters: 128 use_separable_conv: true input_size: [256, 256, 3] max_level: 7 min_level: 3 norm_activation: activation: 'relu6' norm_epsilon: 0.001 norm_momentum: 0.99 use_sync_bn: true train_data: dtype: 'bfloat16' global_batch_size: 256 is_training: true parser: aug_rand_hflip: true aug_scale_max: 2.0 aug_scale_min: 0.5 validation_data: dtype: 'bfloat16' global_batch_size: 256 is_training: false drop_remainder: false trainer: optimizer_config: learning_rate: stepwise: boundaries: [263340, 272580] values: [0.32, 0.032, 0.0032] type: 'stepwise' warmup: linear: warmup_learning_rate: 0.0067 warmup_steps: 2000 steps_per_loop: 462 train_steps: 277200 validation_interval: 462 validation_steps: 20