Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from diffusers.utils import is_torch_version, logging | |
from ..resnet import ( | |
Downsample2D, | |
SpatioTemporalResBlock, | |
Upsample2D, | |
) | |
from ..transformers.transformer_temporal_rope import TransformerSpatioTemporalModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def get_down_block( | |
down_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
add_downsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
num_attention_heads: int, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
downsample_padding: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = True, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
transformer_layers_per_block: int = 1, | |
) -> Union[ | |
"DownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
]: | |
if down_block_type == "DownBlockSpatioTemporal": | |
# added for SDV | |
return DownBlockSpatioTemporal( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
) | |
elif down_block_type == "CrossAttnDownBlockSpatioTemporal": | |
# added for SDV | |
if cross_attention_dim is None: | |
raise ValueError( | |
"cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal" | |
) | |
return CrossAttnDownBlockSpatioTemporal( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
add_downsample=add_downsample, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
add_upsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
num_attention_heads: int, | |
resolution_idx: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = True, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
temporal_num_attention_heads: int = 8, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_max_seq_length: int = 32, | |
transformer_layers_per_block: int = 1, | |
dropout: float = 0.0, | |
) -> Union[ | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
]: | |
if up_block_type == "UpBlockSpatioTemporal": | |
# added for SDV | |
return UpBlockSpatioTemporal( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
add_upsample=add_upsample, | |
) | |
elif up_block_type == "CrossAttnUpBlockSpatioTemporal": | |
# added for SDV | |
if cross_attention_dim is None: | |
raise ValueError( | |
"cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal" | |
) | |
return CrossAttnUpBlockSpatioTemporal( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
add_upsample=add_upsample, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
resolution_idx=resolution_idx, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
# there is always at least one resnet | |
resnets = [ | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=1e-5, | |
) | |
] | |
attentions = [] | |
for i in range(num_layers): | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=1e-5, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
) -> torch.FloatTensor: | |
hidden_states = self.resnets[0]( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
position_ids=position_ids, | |
)[0] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
position_ids=position_ids, | |
)[0] | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
return hidden_states | |
class DownBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
num_layers: int = 1, | |
add_downsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=1e-5, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
position_ids=None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
) | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnDownBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
add_downsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=1e-6, | |
) | |
) | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=1, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
position_ids=None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
blocks = list(zip(self.resnets, self.attentions)) | |
for resnet, attn in blocks: | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
position_ids=position_ids, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
position_ids=position_ids, | |
)[0] | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class UpBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
) | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class CrossAttnUpBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
) | |
) | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
upsample_size: Optional[int] = None, | |
position_ids=None, | |
) -> torch.FloatTensor: | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
position_ids=position_ids, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
position_ids=position_ids, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |