# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from abc import ABC, abstractmethod import typing as tp from einops import rearrange import torch from torch import nn from .. import quantization as qt class CompressionModel(ABC, nn.Module): @abstractmethod def forward(self, x: torch.Tensor) -> qt.QuantizedResult: ... @abstractmethod def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """See `EncodecModel.encode`""" ... @abstractmethod def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """See `EncodecModel.decode`""" ... @property @abstractmethod def channels(self) -> int: ... @property @abstractmethod def frame_rate(self) -> int: ... @property @abstractmethod def sample_rate(self) -> int: ... @property @abstractmethod def cardinality(self) -> int: ... @property @abstractmethod def num_codebooks(self) -> int: ... @property @abstractmethod def total_codebooks(self) -> int: ... @abstractmethod def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. """ ... class EncodecModel(CompressionModel): """Encodec model operating on the raw waveform. Args: encoder (nn.Module): Encoder network. decoder (nn.Module): Decoder network. quantizer (qt.BaseQuantizer): Quantizer network. frame_rate (int): Frame rate for the latent representation. sample_rate (int): Audio sample rate. channels (int): Number of audio channels. causal (bool): Whether to use a causal version of the model. renormalize (bool): Whether to renormalize the audio before running the model. """ # we need assignement to override the property in the abstract class, # I couldn't find a better way... frame_rate: int = 0 sample_rate: int = 0 channels: int = 0 def __init__(self, encoder: nn.Module, decoder: nn.Module, quantizer: qt.BaseQuantizer, frame_rate: int, sample_rate: int, channels: int, causal: bool = False, renormalize: bool = False): super().__init__() self.encoder = encoder self.decoder = decoder self.quantizer = quantizer self.frame_rate = frame_rate self.sample_rate = sample_rate self.channels = channels self.renormalize = renormalize self.causal = causal if self.causal: # we force disabling here to avoid handling linear overlap of segments # as supported in original EnCodec codebase. assert not self.renormalize, 'Causal model does not support renormalize' @property def total_codebooks(self): """Total number of quantizer codebooks available. """ return self.quantizer.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer. """ return self.quantizer.num_codebooks def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. """ self.quantizer.set_num_codebooks(n) @property def cardinality(self): """Cardinality of each codebook. """ return self.quantizer.bins def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: scale: tp.Optional[torch.Tensor] if self.renormalize: mono = x.mean(dim=1, keepdim=True) volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt() scale = 1e-8 + volume x = x / scale scale = scale.view(-1, 1) else: scale = None return x, scale def postprocess(self, x: torch.Tensor, scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor: if scale is not None: assert self.renormalize x = x * scale.view(-1, 1, 1) return x def forward(self, x: torch.Tensor) -> qt.QuantizedResult: assert x.dim() == 3 length = x.shape[-1] x, scale = self.preprocess(x) emb = self.encoder(x) q_res = self.quantizer(emb, self.frame_rate) out = self.decoder(q_res.x) # remove extra padding added by the encoder and decoder assert out.shape[-1] >= length, (out.shape[-1], length) out = out[..., :length] q_res.x = self.postprocess(out, scale) return q_res def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """Encode the given input tensor to quantized representation along with scale parameter. Args: x (torch.Tensor): Float tensor of shape [B, C, T] Returns: codes, scale (tp.Tuple[torch.Tensor, torch.Tensor]): Tuple composed of: codes a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. scale a float tensor containing the scale for audio renormalizealization. """ assert x.dim() == 3 x, scale = self.preprocess(x) emb = self.encoder(x) codes = self.quantizer.encode(emb) return codes, scale def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """Decode the given codes to a reconstructed representation, using the scale to perform audio denormalization if needed. Args: codes (torch.Tensor): Int tensor of shape [B, K, T] scale (tp.Optional[torch.Tensor]): Float tensor containing the scale value. Returns: out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio. """ emb = self.quantizer.decode(codes) out = self.decoder(emb) out = self.postprocess(out, scale) # out contains extra padding added by the encoder and decoder return out class FlattenedCompressionModel(CompressionModel): """Wraps a CompressionModel and flatten its codebooks, e.g. instead of returning [B, K, T], return [B, S, T * (K // S)] with S the number of codebooks per step, and `K // S` the number of 'virtual steps' for each real time step. Args: model (CompressionModel): compression model to wrap. codebooks_per_step (int): number of codebooks to keep per step, this must divide the number of codebooks provided by the wrapped model. extend_cardinality (bool): if True, and for instance if codebooks_per_step = 1, if each codebook has a cardinality N, then the first codebook will use the range [0, N - 1], and the second [N, 2 N - 1] etc. On decoding, this can lead to potentially invalid sequences. Any invalid entry will be silently remapped to the proper range with a modulo. """ def __init__(self, model: CompressionModel, codebooks_per_step: int = 1, extend_cardinality: bool = True): super().__init__() self.model = model self.codebooks_per_step = codebooks_per_step self.extend_cardinality = extend_cardinality @property def total_codebooks(self): return self.model.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer. ..Warning:: this reports the number of codebooks after the flattening of the codebooks! """ assert self.model.num_codebooks % self.codebooks_per_step == 0 return self.codebooks_per_step def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. ..Warning:: this sets the number of codebooks **before** the flattening of the codebooks. """ assert n % self.codebooks_per_step == 0 self.model.set_num_codebooks(n) @property def num_virtual_steps(self) -> int: """Return the number of virtual steps, e.g. one real step will be split into that many steps. """ return self.model.num_codebooks // self.codebooks_per_step @property def frame_rate(self) -> int: return self.model.frame_rate * self.num_virtual_steps @property def sample_rate(self) -> int: return self.model.sample_rate @property def channels(self) -> int: return self.model.channels @property def cardinality(self): """Cardinality of each codebook. """ if self.extend_cardinality: return self.model.cardinality * self.num_virtual_steps else: return self.model.cardinality def forward(self, x: torch.Tensor) -> qt.QuantizedResult: raise NotImplementedError("Not supported, use encode and decode.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: indices, scales = self.model.encode(x) B, K, T = indices.shape indices = rearrange(indices, 'b (k v) t -> b k t v', k=self.codebooks_per_step) if self.extend_cardinality: for virtual_step in range(1, self.num_virtual_steps): indices[..., virtual_step] += self.model.cardinality * virtual_step indices = rearrange(indices, 'b k t v -> b k (t v)') return (indices, scales) def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): B, K, T = codes.shape assert T % self.num_virtual_steps == 0 codes = rearrange(codes, 'b k (t v) -> b (k v) t', v=self.num_virtual_steps) # We silently ignore potential errors from the LM when # using extend_cardinality. codes = codes % self.model.cardinality return self.model.decode(codes, scale)