import torch import torch.nn as nn device = "cuda:0" if torch.cuda.is_available() else "cpu" class Linear(nn.Module): def __init__(self, in_features: int, out_features: int, std: float = 0.1): """ Initialize the linear layer with random values for weights. The weights and biases are registered as parameters, allowing for gradient computation and update during backpropagation. """ super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features weight = torch.randn(in_features, out_features, requires_grad=True) * std bias = torch.zeros(out_features, requires_grad=True) * std self.weight = nn.Parameter(weight) self.bias = nn.Parameter(bias) self.to(device=device) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Perform linear transformation by multiplying the input tensor with the weight matrix, and adding the bias. """ return x @ self.weight + self.bias def __repr__(self) -> str: return f"in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}" class ReLU(nn.Module): """ Rectified Linear Unit (ReLU) activation function. """ @staticmethod def forward(x: torch.Tensor) -> torch.Tensor: return torch.max(x, torch.zeros_like(x)) class Sequential(nn.Module): """ Sequential container for stacking multiple modules, passing the output of one module as input to the next. """ def __init__(self, *layers): """ Initialize the Sequential container with a list of layers. """ super(Sequential, self).__init__() self.layers = nn.ModuleList(layers) def forward(self, x: torch.Tensor) -> torch.Tensor: for layer in self.layers: x = layer(x) return x def __repr__(self) -> str: layer_str = "\n".join( [f" ({i}): {layer}" for i, layer in enumerate(self.layers)] ) return f"{self.__class__.__name__}(\n{layer_str}\n)" class Flatten(nn.Module): """ Reshape the input tensor by flattening all dimensions except the first dimension. """ @staticmethod def forward(x: torch.Tensor) -> torch.Tensor: """ Note that x.view(x.size(0), -1) reshapes the x tensor to (x.size(0), N) where N is the product of the remaining dimensions. E.g. (batch_size, 28, 28) -> (batch_size, 784) """ return x.view(x.size(0), -1) class Dropout(nn.Module): """ Dropout layer for regularization by randomly setting input elements to zero with probability p during training. """ def __init__(self, p=0.2): super(Dropout, self).__init__() self.p = p def forward(self, x: torch.Tensor) -> torch.Tensor: if self.training: mask = (torch.rand(x.shape) > self.p).float().to(x) / (1 - self.p) return x * mask return x class Classifier(nn.Module): """ Classifier model consisting of a sequence of linear layers and ReLU activations, followed by a final linear layer that outputs logits (unnormalized scores) for each of the 10 garment classes. """ def __init__(self): """ The output logits of the last layer can be passed directly to a loss function like CrossEntropyLoss, which will apply the softmax function internally to calculate a probability distribution. """ super(Classifier, self).__init__() self.labels = [ "T-shirt/Top", "Trouser/Jeans", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle-Boot", ] self.main = Sequential( Flatten(), Linear(in_features=784, out_features=256), ReLU(), Dropout(0.2), Linear(in_features=256, out_features=64), ReLU(), Dropout(0.2), Linear(in_features=64, out_features=10), ) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.main(x) def predictions(self, x): with torch.no_grad(): logits = self.forward(x) probs = torch.nn.functional.softmax(logits, dim=1) predictions = dict(zip(self.labels, probs.cpu().detach().numpy().flatten())) return predictions