import logging import sys import gradio as gr from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) DICT_MODELS = { "robust-300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian-robust", "has_lm": True}, "robust-1b": {"model_id": "dbdmg/wav2vec2-xls-r-1b-italian-robust", "has_lm": True}, "300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian", "has_lm": True}, } # LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys()) # the container given by HF has 16GB of RAM, so we need to limit the number of models to load MODELS = sorted(DICT_MODELS.keys()) CACHED_MODELS_BY_ID = {} def build_html(history): html_output = "
" for item in history: if item["error_message"] is not None: html_output += f"
{item['error_message']}
" else: url_suffix = " + Guided by Language Model" if item["decoding_type"] == "Guided by Language Model" else "" html_output += "
" html_output += f'{item["model_id"]}{url_suffix}

' html_output += f'{item["transcription"]}
' html_output += "
" html_output += "
" return html_output def run(uploaded_file, input_file, model_name, decoding_type, history): model = DICT_MODELS.get(model_name) history = history or [] if uploaded_file is None and input_file is None: history.append({ "model_id": model["model_id"], "decoding_type": decoding_type, "transcription": "", "error_message": "No input provided." }) else: if input_file is None: input_file = uploaded_file logger.info(f"Running ASR {model_name}-{decoding_type} for {input_file}") history = history or [] if model is None: history.append({ "error_message": f"Model size {model_size} not found for {language} language :(" }) elif decoding_type == "Guided by Language Model" and not model["has_lm"]: history.append({ "error_message": f"LM not available for {language} language :(" }) else: # model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None) if model_instance is None: model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) CACHED_MODELS_BY_ID[model["model_id"]] = model_instance if decoding_type == "Guided by Language Model": processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder) else: processor = Wav2Vec2Processor.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=None) transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"] logger.info(f"Transcription for {input_file}: {transcription}") history.append({ "model_id": model["model_id"], "decoding_type": decoding_type, "transcription": transcription, "error_message": None }) html_output = build_html(history) return html_output, history gr.Interface( run, inputs=[ gr.inputs.Audio(source="upload", type='filepath', optional=True), gr.inputs.Audio(source="microphone", type="filepath", label="Record something...", optional=True), gr.inputs.Radio(label="Model", choices=MODELS), gr.inputs.Radio(label="Decoding type", choices=["Standard", "Guided by Language Model"]), "state" ], outputs=[ gr.outputs.HTML(label="Outputs"), "state" ], title="Italian Robust ASR", description="", css=""" .result {display:flex;flex-direction:column} .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} .result_item_error {background-color:#ff7070;color:white;align-self:start} """, allow_screenshot=False, allow_flagging="never", theme="huggingface", examples = [ ['demo_example_1.mp3', 'demo_example_1.mp3', 'robust-300m', 'Guided by Language Model'], ['demo_luca_1.wav', 'demo_luca_1.wav', 'robust-300m', 'Guided by Language Model'], ['demo_luca_2.wav', 'demo_luca_2.wav', 'robust-300m', 'Guided by Language Model'] ] ).launch(enable_queue=True)