import logging
import sys
import gradio as gr
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
DICT_MODELS = {
"robust-300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian-robust", "has_lm": True},
"robust-1b": {"model_id": "dbdmg/wav2vec2-xls-r-1b-italian-robust", "has_lm": True},
"300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian", "has_lm": True},
}
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
MODELS = sorted(DICT_MODELS.keys())
CACHED_MODELS_BY_ID = {}
def build_html(history):
html_output = "
"
for item in history:
if item["error_message"] is not None:
html_output += f"
{item['error_message']}
"
else:
url_suffix = " + Guided by Language Model" if item["decoding_type"] == "Guided by Language Model" else ""
html_output += "
"
html_output += "
"
return html_output
def run(uploaded_file, input_file, model_name, decoding_type, history):
model = DICT_MODELS.get(model_name)
history = history or []
if uploaded_file is None and input_file is None:
history.append({
"model_id": model["model_id"],
"decoding_type": decoding_type,
"transcription": "",
"error_message": "No input provided."
})
else:
if input_file is None:
input_file = uploaded_file
logger.info(f"Running ASR {model_name}-{decoding_type} for {input_file}")
history = history or []
if model is None:
history.append({
"error_message": f"Model size {model_size} not found for {language} language :("
})
elif decoding_type == "Guided by Language Model" and not model["has_lm"]:
history.append({
"error_message": f"LM not available for {language} language :("
})
else:
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
if model_instance is None:
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
if decoding_type == "Guided by Language Model":
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
else:
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor, decoder=None)
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
logger.info(f"Transcription for {input_file}: {transcription}")
history.append({
"model_id": model["model_id"],
"decoding_type": decoding_type,
"transcription": transcription,
"error_message": None
})
html_output = build_html(history)
return html_output, history
gr.Interface(
run,
inputs=[
gr.inputs.Audio(source="upload", type='filepath', optional=True),
gr.inputs.Audio(source="microphone", type="filepath", label="Record something...", optional=True),
gr.inputs.Radio(label="Model", choices=MODELS),
gr.inputs.Radio(label="Decoding type", choices=["Standard", "Guided by Language Model"]),
"state"
],
outputs=[
gr.outputs.HTML(label="Outputs"),
"state"
],
title="Italian Robust ASR",
description="",
css="""
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
""",
allow_screenshot=False,
allow_flagging="never",
theme="huggingface",
examples = [
['demo_example_1.mp3', 'demo_example_1.mp3', 'robust-300m', 'Guided by Language Model'],
['demo_luca_1.wav', 'demo_luca_1.wav', 'robust-300m', 'Guided by Language Model'],
['demo_luca_2.wav', 'demo_luca_2.wav', 'robust-300m', 'Guided by Language Model']
]
).launch(enable_queue=True)