import torch import torch.nn as nn class DecoderLayer(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=2, stride=2, padding=[0, 0] ): super(DecoderLayer, self).__init__() self.up_conv = nn.ConvTranspose2d( in_channels=in_channels, out_channels=in_channels // 2, kernel_size=kernel_size, stride=stride, padding=padding[0], ) self.bn1 = nn.BatchNorm2d(in_channels) self.conv = nn.Sequential( *[ self._conv_relu_layer( in_channels=in_channels if i == 0 else out_channels, out_channels=out_channels, padding=padding[1], ) for i in range(2) ] ) def _conv_relu_layer(self, in_channels, out_channels, padding=0): return nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=padding, ), nn.ReLU(), nn.BatchNorm2d(out_channels), ) @staticmethod def crop_cat(x, encoder_output): delta = (encoder_output.shape[-1] - x.shape[-1]) // 2 encoder_output = encoder_output[ :, :, delta : delta + x.shape[-1], delta : delta + x.shape[-1] ] return torch.cat((encoder_output, x), dim=1) def forward(self, x, encoder_output): x = self.crop_cat(self.up_conv(x), encoder_output) x = self.bn1(x) return self.conv(x) class Decoder(nn.Module): def __init__(self, config): super(Decoder, self).__init__() self.decoder = nn.ModuleDict( { name: DecoderLayer( in_channels=block["in_channels"], out_channels=block["out_channels"], kernel_size=block["kernel_size"], stride=block["stride"], padding=block["padding"], ) for name, block in config.items() } ) def forward(self, x, encoder_output): for name, block in self.decoder.items(): x = block(x, encoder_output[name]) return x