import gradio as gr import wave import numpy as np from io import BytesIO from huggingface_hub import hf_hub_download from piper import PiperVoice from transformers import pipeline import typing model_path = hf_hub_download(repo_id="davit312/piper-TTS-Armenian", filename="hye_AM-gor-medium.onnx") config_path = hf_hub_download(repo_id="davit312/piper-TTS-Armenian", filename="hye_AM-gor-medium.onnx.json") voice = PiperVoice.load(model_path, config_path) def synthesize_speech(text): # Create an in-memory buffer for the WAV file buffer = BytesIO() with wave.open(buffer, 'wb') as wav_file: wav_file.setframerate(voice.config.sample_rate) wav_file.setsampwidth(2) # 16-bit wav_file.setnchannels(1) # mono # Synthesize speech # eztext = preprocess_text(text) voice.synthesize(text, wav_file) # Convert buffer to NumPy array for Gradio output buffer.seek(0) audio_data = np.frombuffer(buffer.read(), dtype=np.int16) return audio_data.tobytes(), None # Using Gradio Blocks with gr.Blocks(theme=gr.themes.Base()) as blocks: gr.Markdown("# Text to Speech Synthesizer - Armenian") input_text = gr.Textbox(label="Input text", lines=4) output_audio = gr.Audio(label="Synthesized Speech", type="numpy") output_text = gr.Textbox(label="Output Text", visible=False) # This is the new text output component submit_button = gr.Button("Synthesize") submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text]) # Run the app blocks.launch()