davit312's picture
Update app.py
f45c46a verified
raw
history blame
1.57 kB
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice
from transformers import pipeline
import typing
model_path = hf_hub_download(repo_id="davit312/piper-TTS-Armenian", filename="hye_AM-gor-medium.onnx")
config_path = hf_hub_download(repo_id="davit312/piper-TTS-Armenian", filename="hye_AM-gor-medium.onnx.json")
voice = PiperVoice.load(model_path, config_path)
def synthesize_speech(text):
# Create an in-memory buffer for the WAV file
buffer = BytesIO()
with wave.open(buffer, 'wb') as wav_file:
wav_file.setframerate(voice.config.sample_rate)
wav_file.setsampwidth(2) # 16-bit
wav_file.setnchannels(1) # mono
# Synthesize speech
# eztext = preprocess_text(text)
voice.synthesize(text, wav_file)
# Convert buffer to NumPy array for Gradio output
buffer.seek(0)
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
return audio_data.tobytes(), None
# Using Gradio Blocks
with gr.Blocks(theme=gr.themes.Base()) as blocks:
gr.Markdown("# Text to Speech Synthesizer - Armenian")
input_text = gr.Textbox(label="Input text", lines=4)
output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
output_text = gr.Textbox(label="Output Text", visible=False) # This is the new text output component
submit_button = gr.Button("Synthesize")
submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text])
# Run the app
blocks.launch()