Spaces:
Running
Running
import gradio as gr | |
import wave | |
import numpy as np | |
from io import BytesIO | |
from huggingface_hub import hf_hub_download | |
from piper import PiperVoice | |
from transformers import pipeline | |
import typing | |
model_path = hf_hub_download(repo_id="davit312/piper-TTS-Armenian", filename="hye_AM-gor-medium.onnx") | |
config_path = hf_hub_download(repo_id="davit312/piper-TTS-Armenian", filename="hye_AM-gor-medium.onnx.json") | |
voice = PiperVoice.load(model_path, config_path) | |
def synthesize_speech(text): | |
# Create an in-memory buffer for the WAV file | |
buffer = BytesIO() | |
with wave.open(buffer, 'wb') as wav_file: | |
wav_file.setframerate(voice.config.sample_rate) | |
wav_file.setsampwidth(2) # 16-bit | |
wav_file.setnchannels(1) # mono | |
# Synthesize speech | |
# eztext = preprocess_text(text) | |
voice.synthesize(text, wav_file) | |
# Convert buffer to NumPy array for Gradio output | |
buffer.seek(0) | |
audio_data = np.frombuffer(buffer.read(), dtype=np.int16) | |
return audio_data.tobytes(), None | |
# Using Gradio Blocks | |
with gr.Blocks(theme=gr.themes.Base()) as blocks: | |
gr.Markdown("# Text to Speech Synthesizer - Armenian") | |
input_text = gr.Textbox(label="Input text", lines=4) | |
output_audio = gr.Audio(label="Synthesized Speech", type="numpy") | |
output_text = gr.Textbox(label="Output Text", visible=False) # This is the new text output component | |
submit_button = gr.Button("Synthesize") | |
submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text]) | |
# Run the app | |
blocks.launch() |