FEATURES["past_covariates_final"] = [] for col in FEATURES["past_covariates"]: new_features = data_preprocess[col].to_frame().copy() # Lag Features new_features[col+"_L7D"] = new_features[col].shift(7) new_features[col+"_L14D"] = new_features[col].shift(14) new_features[col+"_L21D"] = new_features[col].shift(21) # Rolling Features # Shift to move the new features into the prediction space (2019-01-01 to 2019-01-07) new_features[col+"_RMean14D"] = new_features[col].shift(7).rolling('14D').mean() # Differencing Features # Shift to move the new features into the prediction space (2019-01-01 to 2019-01-07) new_features[col+"_Diff7D"] = (new_features[col].shift(7) - new_features[col].shift(7).shift(7)) FEATURES["past_covariates_final"].extend([col+"_L7D", col+"_L14D", col+"_L21D", col+"_RMean14D", col+"_Diff7D"]) new_features = new_features.drop(columns=col) data_preprocess = pd.concat([data_preprocess, new_features], axis=1) assert len(data_preprocess.loc[:, FEATURES["past_covariates_final"]].columns) == len(FEATURES["past_covariates"])*5