FEATURES["future_covariates_final"] = [] for col in FEATURES["future_covariates"]: new_features = data_preprocess[col].to_frame().copy() # Lag Features new_features[col+"_L0D"] = new_features[col].shift(0) new_features[col+"_L1D"] = new_features[col].shift(1) new_features[col+"_L2D"] = new_features[col].shift(2) # Rolling Features (No shift needed for future vars) new_features[col+"_RMean14D"] = new_features[col].rolling('14D').mean() new_features[col+"_RMin14D"] = new_features[col].rolling('14D').min() # Expanding Window (No shift needed for future vars) new_features[col+"_EMean14D"] = new_features[col].expanding(min_periods=14).mean() new_features[col+"_EMin14D"] = new_features[col].expanding(min_periods=14).min() FEATURES["future_covariates_final"].extend([col+"_L0D", col+"_L1D", col+"_L2D", col+"_RMean14D", col+"_RMin14D", col+"_EMean14D", col+"_EMin14D"]) new_features = new_features.drop(columns=col) data_preprocess = pd.concat([data_preprocess, new_features], axis=1) assert len(data_preprocess.loc[:, FEATURES["future_covariates_final"]].columns) == len(FEATURES["future_covariates"])*7