# ! pip install gradio import gradio as gr import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Model, load_model import numpy as np # import cv2 from PIL import Image import matplotlib.pyplot as plt import matplotlib.patches as mpatches from pathlib import Path current_directory_path = Path(__file__).parent.resolve() object_detection_model_path = current_directory_path / "carla-image-segmentation-model.h5" lane_detection_model_path = current_directory_path / "lane-detection-for-carla-model.h5" label_map_object = {0: 'Unlabeled', 1: 'Building', 2: 'Fence', 3: 'Other', 4: 'Pedestrian', 5: 'Pole', 6: 'RoadLine', 7: 'Road', 8: 'SideWalk', 9: 'Vegetation', 10: 'Vehicles', 11: 'Wall', 12: 'TrafficSign'} lane_label_map = {0: 'Unlabeled', 1: 'Left Lane', 2: 'Right Lane'} # Load the object detection model object_detection_model = load_model(object_detection_model_path) # Load the lane detection model lane_detection_model = load_model(lane_detection_model_path) def create_mask(object_detection_model, lane_detection_model, image): # tensor = tf.convert_to_tensor(image, dtype=tf.float32) image = tf.io.read_file(image.name) image = tf.image.decode_png(image, channels=3) image = tf.image.convert_image_dtype(image, tf.float32) tensor = tf.image.resize(image, (256, 256), method='nearest') # convert to tensor (specify 3 channels explicitly since png files contains additional alpha channel) # set the dtypes to align with pytorch for comparison since it will use uint8 by default # tensor = tf.io.decode_image(image_tensor, channels=3, dtype=tf.float32) # resize tensor to 224 x 224 # tensor = tf.image.resize(tensor, [256, 256]) # add another dimension at the front to get NHWC shape input_tensor = tf.expand_dims(tensor, axis=0) # with mp_selfie.SelfieSegmentation(model_selection=0) as model: # Create Masks for with Object Detection Model pred_masks_object_detect = object_detection_model.predict(input_tensor) pred_masks_object_detect = tf.expand_dims(tf.argmax(pred_masks_object_detect, axis=-1), axis=-1) pred_masks_object_detect = np.array(pred_masks_object_detect) # Create Masks for with Lane Detection Model pred_masks_lane_detect = lane_detection_model.predict(input_tensor) pred_masks_lane_detect = tf.expand_dims(tf.argmax(pred_masks_lane_detect, axis=-1), axis=-1) pred_masks_lane_detect = np.array(pred_masks_lane_detect) return pred_masks_object_detect, pred_masks_lane_detect def segment_object(image): pred_masks_object_detect, pred_masks_lane_detect = create_mask(object_detection_model, lane_detection_model, image) # image = cv2.resize(image, dsize=(256, 256), interpolation=cv2.INTER_CUBIC) used_classes_object = np.unique(pred_masks_object_detect[0]) used_classes_lane = np.unique(pred_masks_lane_detect[0]) fig_object = plt.figure() im = plt.imshow(tf.keras.preprocessing.image.array_to_img(pred_masks_object_detect[0])) patches_1 = [mpatches.Patch(color=im.cmap(im.norm(int(cls))), label="{}".format(label_map_object[int(cls)])) for cls in used_classes_object] # put those patched as legend-handles into the legend plt.legend(handles=patches_1, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.axis("off") fig_lane = plt.figure() im = plt.imshow(tf.keras.preprocessing.image.array_to_img(pred_masks_lane_detect[0])) patches_1 = [mpatches.Patch(color=im.cmap(im.norm(int(cls))), label="{}".format(lane_label_map[int(cls)])) for cls in used_classes_lane] # put those patched as legend-handles into the legend plt.legend(handles=patches_1, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.axis("off") return fig_object webcam = gr.inputs.Image(shape=(800, 600), source="upload", type='file') #upload webapp = gr.interface.Interface(fn=segment_object, inputs=webcam, outputs="plot") #, live=False webapp.launch(debug=True)