File size: 4,501 Bytes
b36a913
 
 
 
 
0cb64ee
b36a913
5fd9c92
b36a913
5fd9c92
b36a913
 
5fd9c92
 
b36a913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd9c92
b36a913
 
 
5fd9c92
 
 
b36a913
5fd9c92
b36a913
 
 
5fd9c92
b36a913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd9c92
b36a913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import base64
import io
import os
import random

import gradio as gr
import numpy as np
import torch
from colpali_engine.models import ColPali, ColPaliProcessor
from datasets import load_dataset
from dotenv import load_dotenv
from PIL import Image, ImageDraw
from qdrant_client import QdrantClient
from qdrant_client.http import models
from tqdm import tqdm
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable

# Load environment variables
load_dotenv()

# Set up device
if torch.cuda.is_available():
    device = "cuda:0"
elif torch.backends.mps.is_available():
    device = "mps"
else:
    device = "cpu"
print(f"Using device: {device}")

# Set up Qdrant client
QDRANT_URL = os.getenv("QDRANT_URL")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
qdrant_client = QdrantClient(
    url=QDRANT_URL,
    api_key=QDRANT_API_KEY,
    prefer_grpc=True,
)


# Load dataset and set up model
dataset = load_dataset("davanstrien/ufo-ColPali", split="train")
collection_name = "ufo"

model_name = "davanstrien/finetune_colpali_v1_2-ufo-4bit"
colpali_model = ColPali.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map=device,
)
colpali_processor = ColPaliProcessor.from_pretrained(
    "vidore/colpaligemma-3b-pt-448-base"
)


def search_images_by_text(query_text, top_k=5):
    with torch.no_grad():
        batch_query = colpali_processor.process_queries([query_text]).to(
            colpali_model.device
        )
        query_embedding = colpali_model(**batch_query)

    multivector_query = query_embedding[0].cpu().float().numpy().tolist()
    results = qdrant_client.query_points(
        collection_name=collection_name,
        query=multivector_query,
        limit=top_k,
        timeout=60,
    )
    print(results)
    return results


def search_by_text_and_return_images(query_text, top_k=5):
    results = search_images_by_text(query_text, top_k)
    print(results)
    row_ids = [r.id for r in results.points]
    subset = dataset.select(row_ids)
    return list(subset["image"])


class Geocities90s(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.yellow,
        secondary_hue: colors.Color | str = colors.purple,
        neutral_hue: colors.Color | str = colors.gray,
        font: fonts.Font | str = fonts.GoogleFont("Comic Neue"),
        font_mono: fonts.Font | str = fonts.GoogleFont("VT323"),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            font=(font, "Comic Sans MS", "ui-sans-serif", "sans-serif"),
            font_mono=(font_mono, "Courier New", "monospace"),
        )
        self.set(
            body_background_fill="url('https://web.archive.org/web/20091020152706/http://hk.geocities.com/neonlightfantasy/image/stars.gif')",
            button_primary_background_fill="linear-gradient(90deg, *primary_500, *secondary_500)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *primary_500)",
            button_primary_text_color="*neutral_50",
        )


geocities90s = Geocities90s()

css = """
body {
    margin: 0;
    padding: 0;
    color: #00ff00;
    font-family: 'Comic Sans MS', cursive;
}
.gradio-container {
    background-image: url('https://i.ytimg.com/vi/5WapcCXEcXA/maxresdefault.jpg');
    background-repeat: repeat;
    background-size: 300px 300px;
}
h1 {
    text-align: center;
    color: #ff00ff;
    text-shadow: 2px 2px #000000;
    font-size: 36px;
}
.yellow-text {
    color: #ffff00;
    text-shadow: 2px 2px #000000;
    font-weight: bold;
}
"""

demo = gr.Interface(
    fn=search_by_text_and_return_images,
    inputs=[
        gr.Textbox(
            label="Enter your cosmic query",
            placeholder="e.g., alien abduction, crop circles",
        ),
        gr.Slider(
            minimum=1,
            maximum=10,
            step=1,
            label="Number of classified documents",
            value=5,
        ),
    ],
    outputs=gr.Gallery(label="Declassified UFO Sightings", elem_id="gallery"),
    title="🛸 Top Secret UFO Document Search 🛸",
    description="<marquee direction='left' scrollamount='5' class='yellow-text'>Uncover the truth that's out there! The government doesn't want you to know!</marquee>",
    css=css,
    allow_flagging="never",
    theme=geocities90s,
)

if __name__ == "__main__":
    demo.launch()