import asyncio import html import os from io import BytesIO import aiohttp import dotenv import gradio as gr import requests import torch from colpali_engine.models import ColQwen2, ColQwen2Processor from PIL import Image from qdrant_client import QdrantClient dotenv.load_dotenv() if torch.cuda.is_available(): device = "cuda:0" elif torch.backends.mps.is_available(): device = "mps" else: device = "cpu" os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # Initialize ColPali model and processor model_name = "vidore/colqwen2-v0.1" colpali_model = ColQwen2.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map=device, ) colpali_processor = ColQwen2Processor.from_pretrained( model_name, ) # Initialize Qdrant client QDRANT_API_KEY = os.getenv("QDRANT_API_KEY") qdrant_client = QdrantClient( url="https://davanstrien-qdrant-test.hf.space", port=None, api_key=QDRANT_API_KEY, timeout=10, ) collection_name = "song_sheets" # Replace with your actual collection name def search_images_by_text(query_text, top_k=5): # Process and encode the text query with torch.no_grad(): batch_query = colpali_processor.process_queries([query_text]).to( colpali_model.device ) query_embedding = colpali_model(**batch_query) # Convert the query embedding to a list of vectors multivector_query = query_embedding[0].cpu().float().numpy().tolist() # Search in Qdrant search_result = qdrant_client.query_points( collection_name=collection_name, query=multivector_query, limit=top_k, timeout=800, ) return search_result def modify_iiif_url(url, size_percent): # Modify the IIIF URL to use percentage scaling parts = url.split("/") size_index = -3 parts[size_index] = f"pct:{size_percent}" return "/".join(parts) async def fetch_image(session, url): async with session.get(url) as response: content = await response.read() return Image.open(BytesIO(content)).convert("RGB") async def fetch_all_images(urls): async with aiohttp.ClientSession() as session: tasks = [fetch_image(session, url) for url in urls] return await asyncio.gather(*tasks) async def search_and_display(query, top_k, size_percent): results = search_images_by_text(query, top_k) modified_urls = [ modify_iiif_url(result.payload["image_url"], size_percent) for result in results.points ] images = await fetch_all_images(modified_urls) html_output = ( "
Score: {score:.2f}
View ItemThis app allows you to search through the Library of Congress's "America Singing: Nineteenth-Century Song Sheets" collection using natural language queries. The collection contains 4,291 song sheets from the 19th century, offering a unique window into American history, culture, and music.
This search functionality is powered by ColPali, an efficient document retrieval system that uses Vision Language Models. ColPali allows for searching through documents (including images and complex layouts) without the need for traditional text extraction or OCR. It works by directly embedding page images and using a late interaction mechanism to match queries with relevant document patches.
ColPali's approach:
Example of a song sheet from the collection