davanstrien's picture
davanstrien HF staff
Update app.py
eb444c6 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import ModelCard, DatasetCard, model_info, dataset_info
import logging
from typing import Tuple, Literal
import functools
import spaces
from cachetools import TTLCache
from cachetools.func import ttl_cache
import time
import os
import json
os.environ['HF_TRANSFER'] = "1"
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
MODEL_NAME = "davanstrien/Smol-Hub-tldr"
model = None
tokenizer = None
device = None
CACHE_TTL = 6 * 60 * 60 # 6 hours in seconds
CACHE_MAXSIZE = 100
def load_model():
global model, tokenizer, device
logger.info("Loading model and tokenizer...")
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model = model.to(device)
model.eval()
return True
except Exception as e:
logger.error(f"Failed to load model: {e}")
return False
def get_card_info(hub_id: str, repo_type: str = "auto") -> Tuple[str, str]:
"""Get card information from a Hugging Face hub_id."""
model_exists = False
dataset_exists = False
model_text = None
dataset_text = None
# Handle based on repo type
if repo_type == "auto":
# Try getting model card
try:
info = model_info(hub_id)
card = ModelCard.load(hub_id)
model_exists = True
model_text = card.text
except Exception as e:
logger.debug(f"No model card found for {hub_id}: {e}")
# Try getting dataset card
try:
info = dataset_info(hub_id)
card = DatasetCard.load(hub_id)
dataset_exists = True
dataset_text = card.text
except Exception as e:
logger.debug(f"No dataset card found for {hub_id}: {e}")
elif repo_type == "model":
try:
info = model_info(hub_id)
card = ModelCard.load(hub_id)
model_exists = True
model_text = card.text
except Exception as e:
logger.error(f"Failed to get model card for {hub_id}: {e}")
raise ValueError(f"Could not find model with id {hub_id}")
elif repo_type == "dataset":
try:
info = dataset_info(hub_id)
card = DatasetCard.load(hub_id)
dataset_exists = True
dataset_text = card.text
except Exception as e:
logger.error(f"Failed to get dataset card for {hub_id}: {e}")
raise ValueError(f"Could not find dataset with id {hub_id}")
else:
raise ValueError(f"Invalid repo_type: {repo_type}. Must be 'auto', 'model', or 'dataset'")
# Handle different cases
if model_exists and dataset_exists:
return "both", (model_text, dataset_text)
elif model_exists:
return "model", model_text
elif dataset_exists:
return "dataset", dataset_text
else:
raise ValueError(f"Could not find model or dataset with id {hub_id}")
@spaces.GPU
def _generate_summary_gpu(card_text: str, card_type: str) -> str:
"""Internal function that runs on GPU."""
# Determine prefix based on card type
prefix = "<MODEL_CARD>" if card_type == "model" else "<DATASET_CARD>"
# Format input according to the chat template
messages = [{"role": "user", "content": f"{prefix}{card_text[:5000]}"}]
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
inputs = inputs.to(device)
# Generate with optimized settings
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=60,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
temperature=0.4,
do_sample=True,
use_cache=True,
)
# Extract and clean up the summary
input_length = inputs.shape[1]
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=False)
# Extract just the summary part
try:
summary = response.split("<CARD_SUMMARY>")[-1].split("</CARD_SUMMARY>")[0].strip()
except IndexError:
summary = response.strip()
return summary
@ttl_cache(maxsize=CACHE_MAXSIZE, ttl=CACHE_TTL)
def generate_summary(card_text: str, card_type: str) -> str:
"""Cached wrapper for generate_summary with TTL."""
return _generate_summary_gpu(card_text, card_type)
def summarize(hub_id: str = "", repo_type: str = "auto") -> str:
"""Interface function for Gradio. Returns JSON format."""
try:
if hub_id:
# Fetch card information with specified repo_type
card_type, card_text = get_card_info(hub_id, repo_type)
if card_type == "both":
model_text, dataset_text = card_text
model_summary = generate_summary(model_text, "model")
dataset_summary = generate_summary(dataset_text, "dataset")
return json.dumps({
"type": "both",
"hub_id": hub_id,
"model_summary": model_summary,
"dataset_summary": dataset_summary
})
else:
summary = generate_summary(card_text, card_type)
return json.dumps({
"summary": summary,
"type": card_type,
"hub_id": hub_id
})
else:
return json.dumps({"error": "Hub ID must be provided"})
except Exception as e:
return json.dumps({"error": str(e)})
def create_interface():
interface = gr.Interface(
fn=summarize,
inputs=[
gr.Textbox(label="Hub ID", placeholder="e.g., huggingface/llama-7b"),
gr.Radio(
choices=["auto", "model", "dataset"],
value="auto",
label="Repository Type",
info="Choose 'auto' to detect automatically, or specify the repository type"
)
],
outputs=gr.JSON(label="Output"),
title="Hugging Face Hub TLDR Generator",
description="Generate concise summaries of model and dataset cards from the Hugging Face Hub.",
)
return interface
if __name__ == "__main__":
if load_model():
interface = create_interface()
interface.launch()
else:
print("Failed to load model. Please check the logs for details.")