import math import random import cv2 import numpy as np from ..augmentations import box_candidates from ..general import resample_segments, segment2box from ..metrics import bbox_ioa def mixup(im, labels, segments, seg_cls, semantic_masks, im2, labels2, segments2, seg_cls2, semantic_masks2): # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 im = (im * r + im2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) segments = np.concatenate((segments, segments2), 0) seg_cls = np.concatenate((seg_cls, seg_cls2), 0) semantic_masks = np.concatenate((semantic_masks, semantic_masks2), 0) return im, labels, segments, seg_cls, semantic_masks def random_perspective(im, targets=(), segments=(), semantic_masks = (), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # targets = [cls, xyxy] height = im.shape[0] + border[0] * 2 # shape(h,w,c) width = im.shape[1] + border[1] * 2 # Center C = np.eye(3) C[0, 2] = -im.shape[1] / 2 # x translation (pixels) C[1, 2] = -im.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3) P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3) a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - scale, 1 + scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3) S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3) T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels) T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if perspective: im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) else: # affine im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) # Visualize # import matplotlib.pyplot as plt # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() # ax[0].imshow(im[:, :, ::-1]) # base # ax[1].imshow(im2[:, :, ::-1]) # warped # Transform label coordinates n = len(targets) new_segments = [] new_semantic_masks = [] if n: new = np.zeros((n, 4)) segments = resample_segments(segments) # upsample for i, segment in enumerate(segments): xy = np.ones((len(segment), 3)) xy[:, :2] = segment xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine # clip new[i] = segment2box(xy, width, height) new_segments.append(xy) semantic_masks = resample_segments(semantic_masks) for i, semantic_mask in enumerate(semantic_masks): #if i < n: # xy = np.ones((len(segments[i]), 3)) # xy[:, :2] = segments[i] # xy = xy @ M.T # transform # xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine # new[i] = segment2box(xy, width, height) # new_segments.append(xy) xy_s = np.ones((len(semantic_mask), 3)) xy_s[:, :2] = semantic_mask xy_s = xy_s @ M.T # transform xy_s = (xy_s[:, :2] / xy_s[:, 2:3] if perspective else xy_s[:, :2]) # perspective rescale or affine new_semantic_masks.append(xy_s) # filter candidates i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01) targets = targets[i] targets[:, 1:5] = new[i] new_segments = np.array(new_segments)[i] new_semantic_masks = np.array(new_semantic_masks) return im, targets, new_segments, new_semantic_masks def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): # Resize and pad image while meeting stride-multiple constraints shape = im.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return im, ratio, (dw, dh) def copy_paste(im, labels, segments, seg_cls, semantic_masks, p=0.5): # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) n = len(segments) if p and n: h, w, _ = im.shape # height, width, channels im_new = np.zeros(im.shape, np.uint8) # calculate ioa first then select indexes randomly boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4) ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) n = len(indexes) for j in random.sample(list(indexes), k=round(p * n)): l, box, s = labels[j], boxes[j], segments[j] labels = np.concatenate((labels, [[l[0], *box]]), 0) segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) seg_cls.append(l[0].astype(int)) semantic_masks.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED) result = cv2.flip(im, 1) # augment segments (flip left-right) i = cv2.flip(im_new, 1).astype(bool) im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug return im, labels, segments, seg_cls, semantic_masks