import cv2 from pycocotools.coco import COCO from pycocotools import mask as maskUtils # coco id: https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ all_instances_ids = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, ] all_stuff_ids = [ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, # other 183, # unlabeled 0, ] # panoptic id: https://github.com/cocodataset/panopticapi/blob/master/panoptic_coco_categories.json panoptic_stuff_ids = [ 92, 93, 95, 100, 107, 109, 112, 118, 119, 122, 125, 128, 130, 133, 138, 141, 144, 145, 147, 148, 149, 151, 154, 155, 156, 159, 161, 166, 168, 171, 175, 176, 177, 178, 180, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, # unlabeled 0, ] def getCocoIds(name = 'semantic'): if 'instances' == name: return all_instances_ids elif 'stuff' == name: return all_stuff_ids elif 'panoptic' == name: return all_instances_ids + panoptic_stuff_ids else: # semantic return all_instances_ids + all_stuff_ids def getMappingId(index, name = 'semantic'): ids = getCocoIds(name = name) return ids[index] def getMappingIndex(id, name = 'semantic'): ids = getCocoIds(name = name) return ids.index(id) # convert ann to rle encoded string def annToRLE(ann, img_size): h, w = img_size segm = ann['segmentation'] if list == type(segm): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, h, w) rle = maskUtils.merge(rles) elif list == type(segm['counts']): # uncompressed RLE rle = maskUtils.frPyObjects(segm, h, w) else: # rle rle = ann['segmentation'] return rle # decode ann to mask martix def annToMask(ann, img_size): rle = annToRLE(ann, img_size) m = maskUtils.decode(rle) return m # convert mask to polygans def convert_to_polys(mask): # opencv 3.2 contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # before opencv 3.2 # contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) segmentation = [] for contour in contours: contour = contour.flatten().tolist() if 4 < len(contour): segmentation.append(contour) return segmentation